Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Pharmaceuticals (Basel) ; 17(8)2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39204201

ABSTRACT

Peanut allergy, a prevalent and potentially severe condition affecting millions worldwide, has been linked to specific human leukocyte antigens (HLAs), suggesting increased susceptibility. Employing an immunoinformatic strategy, we developed a "logo model" based on amino acid frequencies in the peptide binding core and used it to predict peptides originating from 28 known peanut allergens binding to HLA-DRB1*03:01, one of the susceptibility alleles. These peptides hold promise for immunotherapy in HLA-DRB1*03:01 carriers, offering reduced allergenicity compared to whole proteins. By targeting essential epitopes, immunotherapy can modulate immune responses with minimal risk of severe reactions. This precise approach could induce immune tolerance with fewer adverse effects, presenting a safer and more effective treatment for peanut allergy and other allergic conditions.

2.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732150

ABSTRACT

Peptide antigens derived from tumors have been observed to elicit protective immune responses, categorized as either tumor-associated antigens (TAAs) or tumor-specific antigens (TSAs). Subunit cancer vaccines incorporating these antigens have shown promise in inducing protective immune responses, leading to cancer prevention or eradication. Over recent years, peptide-based cancer vaccines have gained popularity as a treatment modality and are often combined with other forms of cancer therapy. Several clinical trials have explored the safety and efficacy of peptide-based cancer vaccines, with promising outcomes. Advancements in techniques such as whole-exome sequencing, next-generation sequencing, and in silico methods have facilitated the identification of antigens, making it increasingly feasible. Furthermore, the development of novel delivery methods and a deeper understanding of tumor immune evasion mechanisms have heightened the interest in these vaccines among researchers. This article provides an overview of novel insights regarding advancements in the field of peptide-based vaccines as a promising therapeutic avenue for cancer treatment. It summarizes existing computational methods for tumor neoantigen prediction, ongoing clinical trials involving peptide-based cancer vaccines, and recent studies on human vaccination experiments.


Subject(s)
Antigens, Neoplasm , Cancer Vaccines , Neoplasms , Peptides , Humans , Cancer Vaccines/immunology , Cancer Vaccines/therapeutic use , Antigens, Neoplasm/immunology , Neoplasms/immunology , Neoplasms/therapy , Neoplasms/prevention & control , Peptides/immunology , Peptides/chemistry , Vaccines, Subunit/immunology , Animals , Clinical Trials as Topic
SELECTION OF CITATIONS
SEARCH DETAIL