Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters










Publication year range
1.
Sensors (Basel) ; 23(14)2023 Jul 22.
Article in English | MEDLINE | ID: mdl-37514892

ABSTRACT

Distributed acoustic sensors (DAS) utilize optical fibers to monitor vibrations across thousands of independent locations. However, the measured acoustic waveforms experience significant variations along the sensing fiber. These differences primarily arise from changes in coupling between the fiber and its surrounding medium as well as acoustic interferences. Here, a correlation-based method is proposed to automatically find the spatial locations of DAS where temporal waveforms are repeatable. Signal repeatability is directly associated with spatial monitoring locations with both good coupling and low acoustic interference. The DAS interrogator employed is connected to an over 30-year-old optical fiber installed alongside a railway track. Thus, the optical fiber exhibits large coupling changes and different installation types along its path. The results indicate that spatial monitoring locations with good temporal waveform repeatability can be automatically discriminated using the proposed method. The correlation between the temporal waveforms acquired at locations selected by the algorithm proved to be very high considering measurements taken for three days, the first two on consecutive days and the third one a month after the first measurement.

2.
Sci Rep ; 13(1): 4148, 2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36914710

ABSTRACT

The large development of fibre Bragg gratings (FBGs) over decades has made this kind of structures one of the most mature optical fibre sensing technologies existing today, demonstrating key features for a very wide range of applications. FBG sensors are fragile and must be normally protected for real-field applications, although challenging packaging designs are required to mitigate temperature-strain cross-sensitivity issues. Here, a polydimethylsiloxane (PDMS) packaging with a microarray structure that provides gecko-inspired dry adhesion is proposed for strain-free FBG-based temperature sensing. Besides offering protection, the PDMS packaging with an embedded polyamide capillary damps the mechanical strain transferred to the optical fibre, providing FBG-based temperature sensing with a negligible impact of strain. In addition, the microarray structure imprinted on one surface of the packaging provides gecko-inspired dry adhesion based on van der Waals forces. This feature enables the packaged optical fibre sensor to be attached and detached dynamically to nearly any kind of smooth surface, leaving no residuals in the monitored structure. Experimental results verify a fast and accurate temperature response of the sensor with highly mitigated impact of residual strain. The proposed packaged sensor can be used in application where glue is not allowed nor recommendable to be used.

3.
Nat Commun ; 13(1): 4019, 2022 Jul 11.
Article in English | MEDLINE | ID: mdl-35821369

ABSTRACT

Distributed acoustic sensors (DAS) can monitor mechanical vibrations along thousands independent locations using an optical fibre. The measured acoustic waveform highly varies along the sensing fibre due to the intrinsic uneven DAS longitudinal response and distortions originated during mechanical wave propagation. Here, we propose a fully blind method based on near-field acoustic array processing that considers the nonuniform response of DAS channels and can be used with any optical fibre positioning geometry having angular diversity. With no source and fibre location information, the method can reduce signal distortions and provide relevant signal-to-noise ratio enhancement through sparse beamforming spatial filtering. The method also allows the localisation of the two-dimensional spatial coordinates of acoustic sources, requiring no specific fibre installation design. The method offers distributed analysis capabilities of the entire acoustic field outside the sensing fibre, enabling DAS systems to characterise vibration sources placed in areas far from the optical fibre.

4.
Opt Lett ; 47(21): 5521-5524, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-37219259

ABSTRACT

The use of phase cross correlation is proposed to estimate the frequency shift of the Rayleigh intensity spectral response in frequency-scanned phase-sensitive optical time-domain reflectometry (φ-OTDR). Compared with the standard cross correlation, the proposed approach is an amplitude-unbiased technique that evenly weights all spectral samples in the cross correlation, making the frequency-shift estimation less sensitive to high-intensity Rayleigh spectral samples and reducing large estimation errors. Using a 5.63-km sensing fiber with 1-m spatial resolution, experimental results demonstrate that the proposed method highly reduces the presence of large errors in the frequency shift estimation, increasing the reliability of the distributed measurements while keeping the frequency uncertainty as low as approximately 1.0 MHz. The technique can be also used to reduce large errors in any distributed Rayleigh sensor that evaluates spectral shifts, such as polarization-resolved φ-OTDR sensors and optical frequency-domain reflectometers.

6.
Opt Express ; 29(14): 22146-22158, 2021 Jul 05.
Article in English | MEDLINE | ID: mdl-34265986

ABSTRACT

Noise models for both single-pulse and coded Brillouin optical time-domain analyzers (BOTDA) are established to quantify the actual signal-to-noise ratio (SNR) enhancement provided by pulse coding at any fiber position and in any operating condition. Simulation and experimental results show that the polarization noise and spontaneous Brillouin scattering (SpBS) to signal beating noise could highly penalize the performance of coded-BOTDA, depending on the code type and the interrogated fiber position. The models also serve as a useful tool to optimize the SNR improvement by trading off the accumulated Brillouin gain and optical noises.

7.
Sensors (Basel) ; 21(2)2021 Jan 07.
Article in English | MEDLINE | ID: mdl-33430229

ABSTRACT

Monitoring fluid flow rates is imperative for a variety of industries including biomedical engineering, chemical engineering, the food industry, and the oil and gas industries. We propose a flow meter that, unlike turbine or pressure-based sensors, is not flow intrusive, requires zero maintenance, has low risk of clogging, and is compatible with harsh conditions. Using optical fiber sensing, we monitor the temperature distribution along a fluid conduit. Pulsed heat injection locally elevates the fluid's temperature, and from the propagation velocity of the heat downstream, the fluid's velocity is determined. The method is experimentally validated for water and ethanol using optical frequency-domain reflectometry (OFDR) with millimetric spatial resolution over a 1.2 m-long conduit. Results demonstrate that such sensing yields accurate data with a linear response. By changing the optical fiber interrogation to time-domain distributed sensing approaches, the proposed technique can be scaled to cover sensing ranges of several tens of kilometers. On the other extreme, miniaturization for instance by using integrated optical waveguides could potentially bring this flow monitoring technique to microfluidic systems or open future avenues for novel "lab-in-a-fiber" technologies with biomedical applications.


Subject(s)
Fiber Optic Technology , Hot Temperature , Optical Fibers , Temperature
8.
Sensors (Basel) ; 21(3)2021 Jan 21.
Article in English | MEDLINE | ID: mdl-33494419

ABSTRACT

Distributed chemical sensing is demonstrated using standard acrylate coated optical fibers. Swelling of the polymer coating induces strain in the fiber's silica core provoking a local refractive index change which is detectable all along an optical fiber by advanced distributed sensing techniques. Thermal effects can be discriminated from strain using uncoated fiber segments, leading to more accurate strain readings. The concept has been validated by measuring strain responses of various aqueous and organic solvents and different chain length alkanes and blends thereof. Although demonstrated on a short range of two meters using optical frequency-domain reflectometry, the technique can be applied to many kilometer-long fiber installations. Low-cost and insensitive to corrosion and electromagnetic radiation, along with the possibility to interrogate thousands of independent measurement points along a single optical fiber, this novel technique is likely to find applications in environmental monitoring, food analysis, agriculture, water quality monitoring, or medical diagnostics.

9.
Nat Commun ; 11(1): 5774, 2020 11 13.
Article in English | MEDLINE | ID: mdl-33188171

ABSTRACT

Distributed optical fibre sensors deliver a map of a physical quantity along an optical fibre, providing a unique solution for health monitoring of targeted structures. Considerable developments over recent years have pushed conventional distributed sensors towards their ultimate performance, while any significant improvement demands a substantial hardware overhead. Here, a technique is proposed, encoding the interrogating light signal by a single-sequence aperiodic code and spatially resolving the fibre information through a fast post-processing. The code sequence is once forever computed by a specifically developed genetic algorithm, enabling a performance enhancement using an unmodified conventional configuration for the sensor. The proposed approach is experimentally demonstrated in Brillouin and Raman based sensors, both outperforming the state-of-the-art. This methodological breakthrough can be readily implemented in existing instruments by only modifying the software, offering a simple and cost-effective upgrade towards higher performance for distributed fibre sensing.

10.
Opt Express ; 28(14): 19864-19876, 2020 Jul 06.
Article in English | MEDLINE | ID: mdl-32680057

ABSTRACT

The signal-to-noise ratio (SNR) of Brillouin optical time-domain analyzers (BOTDA) is modelled and experimentally validated, using direct detection with and without the use of optical pre-amplification. The behavior of SNR as a function of the Brillouin gain and the probe power reaching the photo detection is analyzed in depth using this developed model and checked using two photodetectors with different specifications. It proves that a pre-amplification associated to a good-quality photodetector and a well-matched post-processing filtering can secure the highest SNR for direct-detection BOTDA. Such an optimal SNR presents only a 2.3 dB penalty compared to the ideal shot-noise-limited case that can only be reached using rather sophisticated configurations. In addition, the model here established predicts the SNR at any fiber position in any given experimental condition.

11.
Sensors (Basel) ; 21(1)2020 Dec 30.
Article in English | MEDLINE | ID: mdl-33396597

ABSTRACT

A high-order polynomial fitting method is proposed to accelerate the computation of double-Gaussian fitting in the retrieval of the Brillouin frequency shifts (BFS) in optical fibers showing two local Brillouin peaks. The method is experimentally validated in a distributed Brillouin sensor under different signal-to noise ratios and realistic spectral scenarios. Results verify that a sixth-order polynomial fitting can provide a reliable initial estimation of the dual local BFS values, which can be subsequently used as initial parameters of a nonlinear double-Gaussian fitting. The method demonstrates a 4.9-fold reduction in the number of iterations required by double-Gaussian fitting and a 3.4-fold improvement in processing time.

12.
Opt Express ; 27(15): 20763-20773, 2019 Jul 22.
Article in English | MEDLINE | ID: mdl-31510165

ABSTRACT

In this paper, a highly-sensitive distributed shape sensor based on a multicore fiber (MCF) and phase-sensitive optical time-domain reflectometry (φ-OTDR) is proposed and experimentally demonstrated. The implemented system features a high strain sensitivity (down to ∼0.3 µÉ›) over a 24 m-long MCF with a spatial resolution of 10 cm. The results demonstrate good repeatability of the relative fiber curvature and bend orientation measurements. Changes in the fiber shape are successfully retrieved, showing detectable displacements of the free moving fiber end as small as 50 µm over a 60 cm-long fiber. In addition, the proposed technique overcomes cross-sensitivity issues between strain and temperature. To the best of our knowledge, the results presented in this work provide the first demonstration of distributed shape sensing based on φ-OTDR using MCFs. This high-sensitivity technique proves to be a promising approach for a wide range of new applications such as dynamic, long distance and three-dimensional distributed shape sensing.

13.
Opt Lett ; 43(19): 4574-4577, 2018 Oct 01.
Article in English | MEDLINE | ID: mdl-30272686

ABSTRACT

Different approaches to implement unipolar Golay coding in Brillouin optical time-domain analysis based on a differential pulse pair (DPP) are investigated. The analysis points out that dedicated post-processing procedures must be followed to secure the sharp spatial resolution associated with the DPP method. Moreover, a novel hybrid Golay-DPP coding scheme is proposed, offering 1.5 dB signal-to-noise ratio improvement with respect to traditional unipolar Golay coding, while halving the measurement time, constituting a 3 dB overall coding gain enhancement. Proof-of-concept experiments validate the proposed technique, demonstrating a 50 cm spatial resolution over a 10.164 km long sensing fiber with a frequency uncertainty of 1.4 MHz.

14.
Opt Express ; 26(13): 16505-16523, 2018 Jun 25.
Article in English | MEDLINE | ID: mdl-30119480

ABSTRACT

The performance of unipolar unicolor coded Brillouin optical time-domain analysis (BOTDA) is evaluated based on both Simplex and Golay codes. Four major detrimental factors that limit the system performance, including decoded-gain trace distortion, coding pulse power non-uniformity, polarization pulling and higher-order non-local effects, are thoroughly investigated. Through theoretical analysis and an experimental validations, solutions and optimal design conditions for unipolar unicolor coded BOTDA are clearly established. First, a logarithmic normalization approach is proposed to resolve the linear accumulated Brillouin amplification without distortion. Then it is found out that Simplex codes are more robust to pulse power non-uniformity compared to Golay codes; whilst the use of a polarization scrambler must be preferred in comparison to a polarization switch to mitigate uncompensated fading induced by polarization pulling in the decoded traces. These optimal conditions enables the sensing performance only limited by higher-order non-local effects. To secure systematic errors below 1.3 MHz on the Brillouin frequency estimation, while simultaneously reaching the maximum signal-to-noise ratio (SNR), a mathematical model is established to trade-off the key parameters in the design, i.e., the single-pulse Brillouin amplification, code length and probe power. It turns out that the optimal SNR performance depends in inverse proportion on the value of maximum single-pulse Brillouin amplification, which is ultimately determined by the spatial resolution. The analysis here presented is expected to serve as a quantitative guideline to design a distortion-free coded BOTDA system operating at maximum SNR.

15.
Nat Commun ; 9(1): 2990, 2018 07 31.
Article in English | MEDLINE | ID: mdl-30065245

ABSTRACT

The distributed fibre sensing technology based on backward stimulated Brillouin scattering (BSBS) is experiencing a rapid development. However, all reported implementations of distributed Brillouin fibre sensors until today are restricted to detecting physical parameters inside the fibre core. On the contrary, forward stimulated Brillouin scattering (FSBS), due to its resonating transverse acoustic waves, is being studied recently to facilitate innovative detections in the fibre surroundings, opening sensing domains that are impossible with BSBS. Nevertheless, due to the co-propagating behaviour of the pump and scattered lights, it is a challenge to position-resolve FSBS information along a fibre. Here we show a distributed FSBS analysis based on recovering the FSBS induced phase change of the propagating light waves. A spatial resolution of 15 m is achieved over a length of 730 m and the local acoustic impedances of water and ethanol in a 30 m-long uncoated fibre segment are measured, agreeing well with the standard values.

16.
Opt Lett ; 43(7): 1487-1490, 2018 Apr 01.
Article in English | MEDLINE | ID: mdl-29601011

ABSTRACT

Elastic vibrations in subwavelength structures have gained importance recently in fundamental light-matter studies and various optoacoustic applications. Existing techniques have revealed the presence of distinct acoustic resonances inside silica microwires yet remain unable to individually localize them. Here, we locally activate distinct classes of acoustic resonances inside a tapered fiber using a phase-correlation distributed Brillouin method. Experimental results verify the presence of surface and hybrid acoustic waves at distinct fiber locations and demonstrate, to the best of our knowledge, the first distributed surface acoustic wave measurement. This technique is important for understanding properties of optoacoustic interactions and enabling designs of novel optomechanical devices.

17.
Opt Lett ; 42(13): 2539-2542, 2017 Jul 01.
Article in English | MEDLINE | ID: mdl-28957279

ABSTRACT

A method to generate an all-optical flip-flop is proposed and experimentally demonstrated based on dynamic Brillouin gratings (DBGs) in polarization maintaining fibers. In a fiber with sufficiently uniform birefringence, this flip-flop can provide extremely long storage times and ultra-wide bandwidth. The experimental results demonstrate an all-optical flip-flop operation using phase-modulated pulses of 300 ps and a 1 m long DBG. This has led to a time-bandwidth product of ∼30, being in this proof-of-concept setup mainly limited by the relatively low bandwidth of the used pulses and the short fiber length.

18.
Opt Express ; 25(14): 16059-16071, 2017 Jul 10.
Article in English | MEDLINE | ID: mdl-28789114

ABSTRACT

A method based on coherent Rayleigh scattering distinctly evaluating temperature and strain is proposed and experimentally demonstrated for distributed optical fiber sensing. Combining conventional phase-sensitive optical time-domain domain reflectometry (ϕOTDR) and ϕOTDR-based birefringence measurements, independent distributed temperature and strain profiles are obtained along a polarization-maintaining fiber. A theoretical analysis, supported by experimental data, indicates that the proposed system for temperature-strain discrimination is intrinsically better conditioned than an equivalent existing approach that combines classical Brillouin sensing with Brillouin dynamic gratings. This is due to the higher sensitivity of coherent Rayleigh scatting compared to Brillouin scattering, thus offering better performance and lower temperature-strain uncertainties in the discrimination. Compared to the Brillouin-based approach, the ϕOTDR-based system here proposed requires access to only one fiber-end, and a much simpler experimental layout. Experimental results validate the full discrimination of temperature and strain along a 100 m-long elliptical-core polarization-maintaining fiber with measurement uncertainties of ~40 mK and ~0.5 µÎµ, respectively. These values agree very well with the theoretically expected measurand resolutions.

19.
Opt Lett ; 42(10): 1903-1906, 2017 May 15.
Article in English | MEDLINE | ID: mdl-28504755

ABSTRACT

A differential pulse-width pair (DPP) Brillouin distributed fiber sensor is implemented to achieve centimetric spatial resolution over distances of several kilometers. The presented scheme uses a scanning method in which the spectral separation between the two probe sidebands is kept constant, while the optical frequency of the pump is swept to scan the Brillouin spectral response. Experimental results show that this method avoids detrimental temporal distortions of the pump pulses, which in a standard implementation prevent the DPP method from operating over mid-to-long distances. Such a novel scanning procedure allows the resolving, for the first time in pure time-domain Brillouin sensors, of 1,000,000 sensing points, i.e., 1 cm spatial resolution over 10 km in a conventional acquisition time.

20.
Opt Express ; 24(22): 25211-25223, 2016 Oct 31.
Article in English | MEDLINE | ID: mdl-27828459

ABSTRACT

A theoretical and experimental study on the response of Brillouin scattering in multi-core optical fibers (MCF) under different curving conditions is presented. Results demonstrate that the Brillouin frequency shift of the off-center cores in MCF is highly bending-dependent, showing a linear dependence on the fiber curvature. This feature is here exploited to develop a new kind of distributed optical fiber sensor, which provides measurements of a distributed profile mapping the longitudinal fiber shape. Using conventional Brillouin optical time-domain analysis with differential pulse-width pairs, fully distributed shape sensing along a 1 km-long MCF is practically demonstrated. Experimental results show a very good agreement with the theoretically expected behavior deduced from the dependence of the Brillouin frequency on the strain induced by the fiber bending over a given core. The analysis and results presented in this paper constitute the first demonstration of distributed bending sensing, providing the cornerstone to further develop it into a fully distributed three-dimensional shape sensor.

SELECTION OF CITATIONS
SEARCH DETAIL
...