Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 108
Filter
1.
bioRxiv ; 2024 May 07.
Article in English | MEDLINE | ID: mdl-38712213

ABSTRACT

Metabolic dysfunction-associated steatotic liver disease (MASLD) is a worldwide health epidemic with a global occurrence of approximately 30%. The pathogenesis of MASLD is a complex, multisystem disorder driven by multiple factors including genetics, lifestyle, and the environment. Patient heterogeneity presents challenges for developing MASLD therapeutics, creation of patient cohorts for clinical trials and optimization of therapeutic strategies for specific patient cohorts. Implementing pre-clinical experimental models for drug development creates a significant challenge as simple in vitro systems and animal models do not fully recapitulate critical steps in the pathogenesis and the complexity of MASLD progression. To address this, we implemented a precision medicine strategy that couples the use of our liver acinus microphysiology system (LAMPS) constructed with patient-derived primary cells. We investigated the MASLD-associated genetic variant PNPLA3 rs738409 (I148M variant) in primary hepatocytes, as it is associated with MASLD progression. We constructed LAMPS with genotyped wild type and variant PNPLA3 hepatocytes together with key non-parenchymal cells and quantified the reproducibility of the model. We altered media components to mimic blood chemistries, including insulin, glucose, free fatty acids, and immune activating molecules to reflect normal fasting (NF), early metabolic syndrome (EMS) and late metabolic syndrome (LMS) conditions. Finally, we investigated the response to treatment with resmetirom, an approved drug for metabolic syndrome-associated steatohepatitis (MASH), the progressive form of MASLD. This study using primary cells serves as a benchmark for studies using patient biomimetic twins constructed with patient iPSC-derived liver cells using a panel of reproducible metrics. We observed increased steatosis, immune activation, stellate cell activation and secretion of pro-fibrotic markers in the PNPLA3 GG variant compared to wild type CC LAMPS, consistent with the clinical characterization of this variant. We also observed greater resmetirom efficacy in PNPLA3 wild type CC LAMPS compared to the GG variant in multiple MASLD metrics including steatosis, stellate cell activation and the secretion of pro-fibrotic markers. In conclusion, our study demonstrates the capability of the LAMPS platform for the development of MASLD precision therapeutics, enrichment of patient cohorts for clinical trials, and optimization of therapeutic strategies for patient subgroups with different clinical traits and disease stages.

2.
bioRxiv ; 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38712079

ABSTRACT

Hepatocellular carcinoma (HCC) is a leading cause of cancer-related deaths, and commonly associated with hepatic fibrosis or cirrhosis. This study aims to establish a rat model mimicking the progression from liver fibrosis to cirrhosis and subsequently to HCC using thioacetamide (TAA). We utilized male Lewis rats, treating them with intra-peritoneal injections of TAA. These rats received bi-weekly injections of either 200 mg/kg TAA or saline (as a control) over a period of 34 weeks. The development of cirrhosis and hepatocarcinogenesis was monitored through histopathological examinations, biochemical markers, and immunohistochemical analyses. Our results demonstrated that chronic TAA administration induced cirrhosis and well-differentiated HCC, characterized by increased fibrosis, altered liver architecture, and enhanced hepatocyte proliferation. Biochemical analyses revealed significant alterations in liver function markers, including elevated alpha-fetoprotein (AFP) levels, without affecting kidney function or causing significant weight loss or mortality in rats. This TAA-induced cirrhosis and HCC rat model successfully replicates the clinical progression of human HCC, including liver function impairment and early-stage liver cancer characteristics. It presents a valuable tool for future research on the mechanisms of antitumor drugs in tumor initiation and development.

3.
bioRxiv ; 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38712135

ABSTRACT

Preclinical and clinical studies suggest that lipid-induced hepatic insulin resistance is a primary defect that predisposes to dysfunction in pancreatic islets, implicating a perturbed liver-pancreas axis underlying the comorbidity of T2DM and MASLD. To investigate this hypothesis, we developed a human biomimetic microphysiological system (MPS) coupling our vascularized liver acinus MPS (vLAMPS) with primary islets on a chip (PANIS) enabling MASLD progression and islet dysfunction to be quantitatively assessed. The modular design of this system (vLAMPS-PANIS) allows intra-organ and inter-organ dysregulation to be deconvoluted. When compared to normal fasting (NF) conditions, under early metabolic syndrome (EMS) conditions, the standalone vLAMPS exhibited characteristics of early stage MASLD, while no significant differences were observed in the standalone PANIS. In contrast, with EMS, the coupled vLAMPS-PANIS exhibited a perturbed islet-specific secretome and a significantly dysregulated glucose stimulated insulin secretion (GSIS) response implicating direct signaling from the dysregulated liver acinus to the islets. Correlations between several pairs of a vLAMPS-derived and a PANIS-derived secreted factors were significantly altered under EMS, as compared to NF conditions, mechanistically connecting MASLD and T2DM associated hepatic factors with islet-derived GLP-1 synthesis and regulation. Since vLAMPS-PANIS is compatible with patient-specific iPSCs, this platform represents an important step towards addressing patient heterogeneity, identifying complex disease mechanisms, and advancing precision medicine.

4.
Elife ; 122024 Jan 11.
Article in English | MEDLINE | ID: mdl-38206124

ABSTRACT

The protein diversity of mammalian cells is determined by arrays of isoforms from genes. Genetic mutation is essential in species evolution and cancer development. Accurate long-read transcriptome sequencing at single-cell level is required to decipher the spectrum of protein expressions in mammalian organisms. In this report, we developed a synthetic long-read single-cell sequencing technology based on LOOPSeq technique. We applied this technology to analyze 447 transcriptomes of hepatocellular carcinoma (HCC) and benign liver from an individual. Through Uniform Manifold Approximation and Projection analysis, we identified a panel of mutation mRNA isoforms highly specific to HCC cells. The evolution pathways that led to the hyper-mutation clusters in single human leukocyte antigen molecules were identified. Novel fusion transcripts were detected. The combination of gene expressions, fusion gene transcripts, and mutation gene expressions significantly improved the classification of liver cancer cells versus benign hepatocytes. In conclusion, LOOPSeq single-cell technology may hold promise to provide a new level of precision analysis on the mammalian transcriptome.


Subject(s)
Artificial Cells , Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Humans , Liver Neoplasms/genetics , Carcinoma, Hepatocellular/genetics , Protein Isoforms/genetics , Mammals
5.
Gastro Hep Adv ; 3(1): 67-77, 2024.
Article in English | MEDLINE | ID: mdl-38292457

ABSTRACT

BACKGROUND AND AIMS: Chronic liver injury that results in cirrhosis and end-stage liver disease (ESLD) causes more than 1 million deaths annually worldwide. Although the impact of genetic factors on the severity of metabolic dysfunction-associated steatotic liver disease (MASLD) and alcohol-related liver disease (ALD) has been previously studied, their contribution to the development of ESLD remains largely unexplored. METHODS: We genotyped 6 MASLD-associated polymorphisms in healthy (n = 123), metabolic dysfunction-associated steatohepatitis (MASH) (n = 145), MASLD-associated ESLD (n = 72), and ALD-associated ESLD (n = 57) cohorts and performed multinomial logistic regression to determine the combined contribution of genetic, demographic, and clinical factors to the progression of ESLD. RESULTS: Distinct sets of factors are associated with the progression to ESLD. The PNPLA3 rs738409:G and TM6SF2 rs58542926:T alleles, body mass index (BMI), age, and female sex were positively associated with progression from a healthy state to MASH. The PNPLA3 rs738409:G allele, age, male sex, and having type 2 diabetes mellitus were positively associated, while BMI was negatively associated with progression from MASH to MASLD-associated ESLD. The PNPLA3 rs738409:G and GCKR rs780094:T alleles, age, and male sex were positively associated, while BMI was negatively associated with progression from a healthy state to ALD-associated ESLD. The findings indicate that the PNPLA3 rs738409:G allele increases susceptibility to ESLD regardless of etiology, the TM6SF2 rs58542926:T allele increases susceptibility to MASH, and the GCKR rs780094:T allele increases susceptibility to ALD-associated ESLD. CONCLUSION: The PNPLA3, TM6SF2, and GCKR minor alleles influence the progression of MASLD-associated or ALD-associated ESLD. Genotyping for these variants in MASLD and ALD patients can enhance risk assessment, prompting early interventions to prevent ESLD.

6.
Cell Stem Cell ; 30(12): 1640-1657.e8, 2023 12 07.
Article in English | MEDLINE | ID: mdl-38029740

ABSTRACT

The liver is known for its remarkable regenerative ability through proliferation of hepatocytes. Yet, during chronic injury or severe hepatocyte death, proliferation of hepatocytes is exhausted. To overcome this hurdle, we propose vascular-endothelial-growth-factor A (VEGFA) as a therapeutic means to accelerate biliary epithelial-cell (BEC)-to-hepatocyte conversion. Investigation in zebrafish establishes that blocking VEGF receptors abrogates BEC-driven liver repair, while VEGFA overexpression promotes it. Delivery of VEGFA via nonintegrative and safe nucleoside-modified mRNA encapsulated into lipid nanoparticles (mRNA-LNPs) in acutely or chronically injured mouse livers induces robust BEC-to-hepatocyte conversion and elimination of steatosis and fibrosis. In human and murine diseased livers, we further identified VEGFA-receptor KDR-expressing BECs associated with KDR-expressing cell-derived hepatocytes. This work defines KDR-expressing cells, most likely being BECs, as facultative progenitors. This study reveals unexpected therapeutic benefits of VEGFA delivered via nucleoside-modified mRNA-LNP, whose safety is widely validated with COVID-19 vaccines, for harnessing BEC-driven repair to potentially treat liver diseases.


Subject(s)
Liver Diseases , Zebrafish , Animals , Mice , Humans , RNA, Messenger/genetics , COVID-19 Vaccines , Nucleosides , Hepatocytes , Liver , Epithelial Cells , Liver Diseases/pathology , Fibrosis , Liver Regeneration , Vascular Endothelial Growth Factor A/genetics
7.
Int J Mol Sci ; 24(17)2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37686209

ABSTRACT

Metabolic-dysfunction-associated steatotic liver disease (MASLD), which affects 30 million people in the US and is anticipated to reach over 100 million by 2030, places a significant financial strain on the healthcare system. There is presently no FDA-approved treatment for MASLD despite its public health significance and financial burden. Understanding the connection between point mutations, liver enzymes, and MASLD is important for comprehending drug toxicity in healthy or diseased individuals. Multiple genetic variations have been linked to MASLD susceptibility through genome-wide association studies (GWAS), either increasing MASLD risk or protecting against it, such as PNPLA3 rs738409, MBOAT7 rs641738, GCKR rs780094, HSD17B13 rs72613567, and MTARC1 rs2642438. As the impact of genetic variants on the levels of drug-metabolizing cytochrome P450 (CYP) enzymes in human hepatocytes has not been thoroughly investigated, this study aims to describe the analysis of metabolic functions for selected phase I and phase II liver enzymes in human hepatocytes. For this purpose, fresh isolated primary hepatocytes were obtained from healthy liver donors (n = 126), and liquid chromatography-mass spectrometry (LC-MS) was performed. For the cohorts, participants were classified into minor homozygotes and nonminor homozygotes (major homozygotes + heterozygotes) for five gene polymorphisms. For phase I liver enzymes, we found a significant difference in the activity of CYP1A2 in human hepatocytes carrying MBOAT7 (p = 0.011) and of CYP2C8 in human hepatocytes carrying PNPLA3 (p = 0.004). It was also observed that the activity of CYP2C9 was significantly lower in human hepatocytes carrying HSD17B13 (p = 0.001) minor homozygous compared to nonminor homozygous. No significant difference in activity of CYP2E1, CYP2C8, CYP2D6, CYP2E1, CYP3A4, ECOD, FMO, MAO, AO, and CES2 and in any of the phase II liver enzymes between human hepatocytes carrying genetic variants for PNPLA3 rs738409, MBOAT7 rs641738, GCKR rs780094, HSD17B13 rs72613567, and MTARC1 rs2642438 were observed. These findings offer a preliminary assessment of the influence of genetic variations on drug-metabolizing cytochrome P450 (CYP) enzymes in healthy human hepatocytes, which may be useful for future drug discovery investigations.


Subject(s)
Digestive System Diseases , Fatty Liver , Liver Diseases , Humans , Cytochrome P-450 CYP2C8/genetics , Cytochrome P-450 CYP2E1 , Genome-Wide Association Study , Hepatocytes
8.
Organogenesis ; 19(1): 2247576, 2023 12 31.
Article in English | MEDLINE | ID: mdl-37598346

ABSTRACT

Primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC), the most common types of cholestatic liver disease (CLD), result in enterohepatic obstruction, bile acid accumulation, and hepatotoxicity. The mechanisms by which hepatocytes respond to and cope with CLD remain largely unexplored. This study includes the characterization of hepatocytes isolated from explanted livers of patients with PBC and PSC. We examined the expression of hepatocyte-specific genes, intracellular bile acid (BA) levels, and oxidative stress in primary-human-hepatocytes (PHHs) isolated from explanted livers of patients with PBC and PSC and compared them with control normal human hepatocytes. Our findings provide valuable initial insights into the hepatocellular response to cholestasis in CLD and help support the use of PHHs as an experimental tool for these diseases.


Subject(s)
Carcinoma, Hepatocellular , Cholestasis , Liver Neoplasms , Humans , Bile Acids and Salts
9.
bioRxiv ; 2023 Apr 18.
Article in English | MEDLINE | ID: mdl-37131823

ABSTRACT

The liver is known for its remarkable regenerative ability through proliferation of hepatocytes. Yet, during chronic injury or severe hepatocyte death, proliferation of hepatocytes is exhausted. To overcome this hurdle, we propose vascular-endothelial-growth-factor A (VEGFA) as a therapeutic means to accelerate biliary epithelial cell (BEC)-to-hepatocyte conversion. Investigation in zebrafish establishes that blocking VEGF receptors abrogates BEC-driven liver repair, while VEGFA overexpression promotes it. Delivery of VEGFA via non-integrative and safe nucleoside-modified mRNA encapsulated into lipid-nanoparticles (mRNA-LNP) in acutely or chronically injured mouse livers induces robust BEC-to-hepatocyte conversion and reversion of steatosis and fibrosis. In human and murine diseased livers, we further identified VEGFA-receptor KDR-expressing BECs associated with KDR-expressing cell-derived hepatocytes. This defines KDR-expressing cells, most likely being BECs, as facultative progenitors. This study reveals novel therapeutic benefits of VEGFA delivered via nucleoside-modified mRNA-LNP, whose safety is widely validated with COVID-19 vaccines, for harnessing BEC-driven repair to potentially treat liver diseases. Highlights: Complementary mouse and zebrafish models of liver injury demonstrate the therapeutic impact of VEGFA-KDR axis activation to harness BEC-driven liver regeneration.VEGFA mRNA LNPs restore two key features of the chronic liver disease in humans such as steatosis and fibrosis.Identification in human cirrhotic ESLD livers of KDR-expressing BECs adjacent to clusters of KDR+ hepatocytes suggesting their BEC origin.KDR-expressing BECs may represent facultative adult progenitor cells, a unique BEC population that has yet been uncovered.

10.
bioRxiv ; 2023 Aug 21.
Article in English | MEDLINE | ID: mdl-36993628

ABSTRACT

The protein diversity of mammalian cells is determined by arrays of isoforms from genes. Genetic mutation is essential in species evolution and cancer development. Accurate Long-read transcriptome sequencing at single-cell level is required to decipher the spectrum of protein expressions in mammalian organisms. In this report, we developed a synthetic long-read single-cell sequencing technology based on LOOPseq technique. We applied this technology to analyze 447 transcriptomes of hepatocellular carcinoma (HCC) and benign liver from an individual. Through Uniform Manifold Approximation and Projection (UMAP) analysis, we identified a panel of mutation mRNA isoforms highly specific to HCC cells. The evolution pathways that led to the hyper-mutation clusters in single human leukocyte antigen (HLA) molecules were identified. Novel fusion transcripts were detected. The combination of gene expressions, fusion gene transcripts, and mutation gene expressions significantly improved the classification of liver cancer cells versus benign hepatocytes. In conclusion, LOOPseq single-cell technology may hold promise to provide a new level of precision analysis on the mammalian transcriptome.

11.
Am J Pathol ; 193(2): 201-212, 2023 02.
Article in English | MEDLINE | ID: mdl-36414085

ABSTRACT

Mutations in POLG, the gene encoding the catalytic subunit of DNA polymerase gamma, result in clinical syndromes characterized by mitochondrial DNA (mtDNA) depletion in affected tissues with variable organ involvement. The brain is one of the most affected organs, and symptoms include intractable seizures, developmental delay, dementia, and ataxia. Patient-derived induced pluripotent stem cells (iPSCs) provide opportunities to explore mechanisms in affected cell types and potential therapeutic strategies. Fibroblasts from two patients were reprogrammed to create new iPSC models of POLG-related mitochondrial diseases. Compared with iPSC-derived control neurons, mtDNA depletion was observed upon differentiation of the POLG-mutated lines to cortical neurons. POLG-mutated neurons exhibited neurite simplification with decreased mitochondrial content, abnormal mitochondrial structure and function, and increased cell death. Expression of the mitochondrial kinase PTEN-induced kinase 1 (PINK1) mRNA was decreased in patient neurons. Overexpression of PINK1 increased mitochondrial content and ATP:ADP ratios in neurites, decreasing cell death and rescuing neuritic complexity. These data indicate an intersection of polymerase gamma and PINK1 pathways that may offer a novel therapeutic option for patients affected by this spectrum of disorders.


Subject(s)
Induced Pluripotent Stem Cells , Humans , Induced Pluripotent Stem Cells/metabolism , Mutation , DNA, Mitochondrial , Neurons/metabolism , Dendrites/metabolism , Protein Kinases/genetics , DNA Polymerase gamma/genetics
12.
bioRxiv ; 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38187603

ABSTRACT

BACKGROUND AND AIMS: TM6SF2 rs58542926 (E167K) is associated with an increase in the prevalence of Metabolic Disfunction-Associated Steatotic Liver Disease (MASLD). Despite all the investigation related to the role of this variant in lipid metabolism, conflicting results in mouse studies underscore the importance of creating a human model for understanding the TM6SF2 mechanism. Therefore, the aim of this study is to generate a reliable human in vitro model that mimic the effects of the TM6SF2 E167K mutation and can be used for future mechanism studies. APPROACH AND RESULTS: We performed gene editing on human-induced pluripotent stem cells (iPSC) derived from a healthy individual to obtain the cells carrying the TM6SF2 E167K mutation. After hepatic differentiation, a decrease in TM6SF2 protein expression was observed in the mutated-induced hepatocyte. An increase in intracellular lipid droplets and a decrease in the efflux of cholesterol and ApoB100 were also observed. Transcriptomics analysis showed up-regulation of genes related to the transport, flux, and oxidation of lipids, fatty acids, and cholesterol in TM6SF2 E167K cells. Additionally, signs of cellular stress were observed in the ER and mitochondria. CONCLUSIONS: Our findings indicate that induced hepatocytes generated from iPSC carrying the TM6SF2 E167K recapitulate the effects observed in human hepatocytes from individuals with the TM6SF2 mutation. This study characterizes an in vitro model that can be used as a platform to help in the identification of potential clinical targets and therapies and to understand the mechanism by which the TM6SF2 E167K variant leads to vulnerability to MASLD.

13.
iScience ; 25(12): 105503, 2022 Dec 22.
Article in English | MEDLINE | ID: mdl-36404924

ABSTRACT

Advances in cellular engineering, as well as gene, and cell therapy, may be used to produce human tissues with programmable genetically enhanced functions designed to model and/or treat specific diseases. Fabrication of synthetic human liver tissue with these programmable functions has not been described. By generating human iPSCs with target gene expression controlled by a guide RNA-directed CRISPR-Cas9 synergistic-activation-mediator, we produced synthetic human liver tissues with programmable functions. Such iPSCs were guide-RNA-treated to enhance expression of the clinically relevant CYP3A4 and UGT1A1 genes, and after hepatocyte-directed differentiation, cells demonstrated enhanced functions compared to those found in primary human hepatocytes. We then generated human liver tissue with these synthetic human iPSC-derived hepatocytes (iHeps) and other non-parenchymal cells demonstrating advanced programmable functions. Fabrication of synthetic human liver tissue with modifiable functional genetic programs may be a useful tool for drug discovery, investigating biology, and potentially creating bioengineered organs with specialized functions.

14.
Front Med (Lausanne) ; 9: 964448, 2022.
Article in English | MEDLINE | ID: mdl-36250086

ABSTRACT

Acute hepatic failure is associated with high morbidity and mortality for which the only definitive therapy is liver transplantation. Some fraction of those who undergo emergency transplantation have been shown to recover native liver function when transplanted with an auxiliary hepatic graft that leaves part of the native liver intact. Thus, transplantation could have been averted with the development and use of some form of hepatic support. The costs of developing and testing liver support systems could be dramatically reduced by the availability of a reliable large animal model of hepatic failure with a large therapeutic window that allows the assessment of efficacy and timing of intervention. Non-lethal forms of hepatic injury were examined in combination with liver-directed radiation in non-human primates (NHPs) to develop a model of acute hepatic failure that mimics the human condition. Porcine hepatocyte transplantation was then tested as a potential therapy for acute hepatic failure. After liver-directed radiation therapy, delivery of a non-lethal hepatic ischemia-reperfusion injury reliably and rapidly generated liver failure providing conditions that can enable pre-clinical testing of liver support or replacement therapies. Unfortunately, in preliminary studies, low hepatocyte engraftment and over-immune suppression interfered with the ability to assess the efficacy of transplanted porcine hepatocytes in the model. A model of acute liver failure in NHPs was created that recapitulates the pathophysiology and pathology of the clinical condition, does so with reasonably predictable kinetics, and results in 100% mortality. The model allowed preliminary testing of xenogeneic hepatocyte transplantation as a potential therapy.

15.
Semin Liver Dis ; 42(4): 413-422, 2022 11.
Article in English | MEDLINE | ID: mdl-36044927

ABSTRACT

Although the underlying cause may vary across countries and demographic groups, liver disease is a major cause of morbidity and mortality globally. Orthotopic liver transplantation is the only definitive treatment for liver failure but is limited by the lack of donor livers. The development of drugs that prevent the progression of liver disease and the generation of alternative liver constructs for transplantation could help alleviate the burden of liver disease. Bioengineered livers containing human induced pluripotent stem cell (iPSC)-derived liver cells are being utilized to study liver disease and to identify and test potential therapeutics. Moreover, bioengineered livers containing pig hepatocytes and endothelial cells have been shown to function and survive after transplantation into pig models of liver failure, providing preclinical evidence toward future clinical applications. Finally, bioengineered livers containing human iPSC-derived liver cells have been shown to function and survive after transplantation in rodents but require considerable optimization and testing prior to clinical use. In conclusion, bioengineered livers have emerged as a suitable tool for modeling liver diseases and as a promising alternative graft for clinical transplantation. The integration of novel technologies and techniques for the assembly and analysis of bioengineered livers will undoubtedly expand future applications in basic research and clinical transplantation.


Subject(s)
Induced Pluripotent Stem Cells , Liver Diseases , Liver Failure , Humans , Swine , Animals , Endothelial Cells , Hepatocytes , Liver/physiology , Liver Diseases/surgery
16.
Metabolites ; 12(6)2022 Jun 07.
Article in English | MEDLINE | ID: mdl-35736460

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) has a high global prevalence with a heterogeneous and complex pathophysiology that presents barriers to traditional targeted therapeutic approaches. We describe an integrated quantitative systems pharmacology (QSP) platform that comprehensively and unbiasedly defines disease states, in contrast to just individual genes or pathways, that promote NAFLD progression. The QSP platform can be used to predict drugs that normalize these disease states and experimentally test predictions in a human liver acinus microphysiology system (LAMPS) that recapitulates key aspects of NAFLD. Analysis of a 182 patient-derived hepatic RNA-sequencing dataset generated 12 gene signatures mirroring these states. Screening against the LINCS L1000 database led to the identification of drugs predicted to revert these signatures and corresponding disease states. A proof-of-concept study in LAMPS demonstrated mitigation of steatosis, inflammation, and fibrosis, especially with drug combinations. Mechanistically, several structurally diverse drugs were predicted to interact with a subnetwork of nuclear receptors, including pregnane X receptor (PXR; NR1I2), that has evolved to respond to both xenobiotic and endogenous ligands and is intrinsic to NAFLD-associated transcription dysregulation. In conjunction with iPSC-derived cells, this platform has the potential for developing personalized NAFLD therapeutic strategies, informing disease mechanisms, and defining optimal cohorts of patients for clinical trials.

17.
J Clin Invest ; 132(14)2022 07 15.
Article in English | MEDLINE | ID: mdl-35700043

ABSTRACT

Hepatic inflammation is culpable for the evolution of asymptomatic steatosis to nonalcoholic steatohepatitis (NASH). Hepatic inflammation results from abnormal macrophage activation. We found that FoxO1 links overnutrition to hepatic inflammation by regulating macrophage polarization and activation. FoxO1 was upregulated in hepatic macrophages, correlating with hepatic inflammation, steatosis, and fibrosis in mice and patients with NASH. Myeloid cell conditional FoxO1 knockout skewed macrophage polarization from proinflammatory M1 to the antiinflammatory M2 phenotype, accompanied by a reduction in macrophage infiltration in liver. These effects mitigated overnutrition-induced hepatic inflammation and insulin resistance, contributing to improved hepatic metabolism and increased energy expenditure in myeloid cell FoxO1-knockout mice on a high-fat diet. When fed a NASH-inducing diet, myeloid cell FoxO1-knockout mice were protected from developing NASH, culminating in a reduction in hepatic inflammation, steatosis, and fibrosis. Mechanistically, FoxO1 counteracts Stat6 to skew macrophage polarization from M2 toward the M1 signature to perpetuate hepatic inflammation in NASH. FoxO1 appears to be a pivotal mediator of macrophage activation in response to overnutrition and a therapeutic target for ameliorating hepatic inflammation to stem the disease progression from benign steatosis to NASH.


Subject(s)
Forkhead Box Protein O1 , Non-alcoholic Fatty Liver Disease , Overnutrition , Animals , Diet, High-Fat/adverse effects , Disease Models, Animal , Fibrosis , Forkhead Box Protein O1/genetics , Forkhead Box Protein O1/metabolism , Inflammation/metabolism , Liver/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Non-alcoholic Fatty Liver Disease/chemically induced , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/prevention & control , Overnutrition/pathology
18.
Hepatol Commun ; 6(7): 1561-1573, 2022 07.
Article in English | MEDLINE | ID: mdl-35289126

ABSTRACT

The initial creation of human-induced pluripotent stem cells (iPSCs) set the foundation for the future of regenerative medicine. Human iPSCs can be differentiated into a variety of cell types in order to study normal and pathological molecular mechanisms. Currently, there are well-defined protocols for the differentiation, characterization, and establishment of functionality in human iPSC-derived hepatocytes (iHep) and iPSC-derived cholangiocytes (iCho). Electrophysiological study on chloride ion efflux channel activity in iHep and iCho cells has not been previously reported. We generated iHep and iCho cells and characterized them based on hepatocyte-specific and cholangiocyte-specific markers. The relevant transmembrane channels were selected: cystic fibrosis transmembrane conductance regulator, leucine rich repeat-containing 8 subunit A, and transmembrane member 16 subunit A. To measure the activity in these channels, we used whole-cell patch-clamp techniques with a standard intracellular and extracellular solution. Our iHep and iCho cells demonstrated definitive activity in the selected transmembrane channels, and this approach may become an important tool for investigating human liver biology of cholestatic diseases.


Subject(s)
Induced Pluripotent Stem Cells , Cell Differentiation/physiology , Epithelial Cells , Hepatocytes , Humans , Liver
19.
Am J Transplant ; 22(3): 731-744, 2022 03.
Article in English | MEDLINE | ID: mdl-34932270

ABSTRACT

Unlimited organ availability would represent a paradigm shift in transplantation. Long-term in vivo engraftment and function of scaled-up bioengineered liver grafts have not been previously reported. In this study, we describe a human-scale transplantable liver graft engineered on a porcine liver-derived scaffold. We repopulated the scaffold parenchyma with primary hepatocytes and the vascular system with endothelial cells. For in vivo functional testing, we performed auxiliary transplantation of the repopulated scaffold in pigs with induced liver failure. It was observed that the auxiliary bioengineered liver graft improved liver function for 28 days and exhibited upregulation of liver-specific genes. This study is the first of its kind to present 28 days of posttransplant evaluation of a bioengineered liver graft using a preclinical large animal model. Furthermore, it provides definitive evidence for the feasibility of engineering human-scale transplantable liver grafts for clinical applications.


Subject(s)
Liver Failure , Liver Transplantation , Animals , Endothelial Cells , Hepatocytes/transplantation , Liver/blood supply , Swine , Tissue Engineering , Tissue Scaffolds
20.
Hepatol Commun ; 5(11): 1911-1926, 2021 11.
Article in English | MEDLINE | ID: mdl-34558820

ABSTRACT

The only definitive therapy for end-stage liver disease is whole-organ transplantation. The success of this intervention is severely limited by the complexity of the surgery, the cost of patient care, the need for long-term immunosuppression, and the shortage of donor organs. In rodents and humans, end-stage degeneration of hepatocyte function is associated with disruption of the liver-specific transcriptional network and a nearly complete loss of promoter P1-driven hepatocyte nuclear factor 4-alpha (P1-HNF4α) activity. Re-expression of HNF4α2, the predominant P1-HNF4α, reinstates the transcriptional network, normalizes the genes important for hepatocyte function, and reverses liver failure in rodents. In this study, we tested the effectiveness of supplementary expression of human HNF4α2 messenger RNA (mRNA) in primary human hepatocytes isolated from explanted livers of patients who underwent transplant for end-stage irreversibly decompensated liver failure (Child-Pugh B, C) resulting from alcohol-mediated cirrhosis and nonalcoholic steatohepatitis. Re-expression of HNF4α2 in decompensated cirrhotic human hepatocytes corrects the disrupted transcriptional network and normalizes the expression of genes important for hepatocyte function, improving liver-specific protein expression. End-stage liver disease in humans is associated with both loss of P1-HNF4α expression and failure of its localization to the nucleus. We found that while HNF4α2 re-expression increased the amount of P1-HNF4α protein in hepatocytes, it did not alter the ability of hepatocytes to localize P1-HNF4α to their nuclei. Conclusion: Re-expression of HNF4α2 mRNA in livers of patients with end-stage disease may be an effective therapy for terminal liver failure that would circumvent the need for organ transplantation. The efficacy of this strategy may be enhanced by discovering the cause for loss of nuclear P1-HNF4α localization in end-stage cirrhosis, a process not found in rodent studies.


Subject(s)
Cellular Reprogramming/genetics , End Stage Liver Disease/genetics , Hepatocyte Nuclear Factor 4/genetics , Liver Cirrhosis/genetics , RNA, Messenger/physiology , Animals , Cell Culture Techniques , Gene Regulatory Networks/genetics , Hepatocytes/physiology , Humans , Liver/cytology , Promoter Regions, Genetic/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...