Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Mol Psychiatry ; 22(6): 874-883, 2017 06.
Article in English | MEDLINE | ID: mdl-27113998

ABSTRACT

A recent genome-wide association meta-analysis for Alzheimer's disease (AD) identified 19 risk loci (in addition to APOE) in which the functional genes are unknown. Using Drosophila, we screened 296 constructs targeting orthologs of 54 candidate risk genes within these loci for their ability to modify Tau neurotoxicity by quantifying the size of >6000 eyes. Besides Drosophila Amph (ortholog of BIN1), which we previously implicated in Tau pathology, we identified p130CAS (CASS4), Eph (EPHA1), Fak (PTK2B) and Rab3-GEF (MADD) as Tau toxicity modulators. Of these, the focal adhesion kinase Fak behaved as a strong Tau toxicity suppressor in both the eye and an independent focal adhesion-related wing blister assay. Accordingly, the human Tau and PTK2B proteins biochemically interacted in vitro and PTK2B co-localized with hyperphosphorylated and oligomeric Tau in progressive pathological stages in the brains of AD patients and transgenic Tau mice. These data indicate that PTK2B acts as an early marker and in vivo modulator of Tau toxicity.


Subject(s)
Focal Adhesion Kinase 2/genetics , tau Proteins/metabolism , Alzheimer Disease/genetics , Animals , Biomarkers , Disease Models, Animal , Drosophila/genetics , Focal Adhesion Kinase 2/metabolism , Genetic Loci/genetics , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study , Humans , Risk Factors , tau Proteins/genetics
2.
Mol Psychiatry ; 18(11): 1225-34, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23399914

ABSTRACT

Genome-wide association studies (GWAS) have identified a region upstream the BIN1 gene as the most important genetic susceptibility locus in Alzheimer's disease (AD) after APOE. We report that BIN1 transcript levels were increased in AD brains and identified a novel 3 bp insertion allele ∼28 kb upstream of BIN1, which increased (i) transcriptional activity in vitro, (ii) BIN1 expression levels in human brain and (iii) AD risk in three independent case-control cohorts (Meta-analysed Odds ratio of 1.20 (1.14-1.26) (P=3.8 × 10(-11))). Interestingly, decreased expression of the Drosophila BIN1 ortholog Amph suppressed Tau-mediated neurotoxicity in three different assays. Accordingly, Tau and BIN1 colocalized and interacted in human neuroblastoma cells and in mouse brain. Finally, the 3 bp insertion was associated with Tau but not Amyloid loads in AD brains. We propose that BIN1 mediates AD risk by modulating Tau pathology.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Genetic Predisposition to Disease/genetics , Nuclear Proteins/genetics , Tumor Suppressor Proteins/genetics , tau Proteins/metabolism , Adaptor Proteins, Signal Transducing/biosynthesis , Alzheimer Disease/metabolism , Animals , Brain/metabolism , Brain/pathology , Carrier Proteins/genetics , Carrier Proteins/metabolism , Case-Control Studies , Cells, Cultured , Drosophila Proteins/deficiency , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Endophenotypes , Gene Expression/genetics , Humans , Mice , Nerve Degeneration/genetics , Nerve Degeneration/pathology , Nuclear Proteins/biosynthesis , Plaque, Amyloid/pathology , Polymorphism, Single Nucleotide/genetics , Synaptosomes/pathology , Transcription Factors/deficiency , Transcription Factors/genetics , Transcription Factors/metabolism , Tumor Suppressor Proteins/biosynthesis , tau Proteins/antagonists & inhibitors
3.
Cell Mol Biol (Noisy-le-grand) ; 57 Suppl: OL1520-7, 2011 Jul 25.
Article in English | MEDLINE | ID: mdl-21791170

ABSTRACT

In skeletal muscle the relationship between Na+,K+-ATPase activity and isoform content remains controversial (9,6). It could be due to the fiber-type content, membrane isolation and analytical methods. We investigated the distribution of subunit α1 and α2 Na+,K+-ATPase catalytic isoforms and the Na+,K+-ATPase activity in isolated membranes from white ( type I and glycolitic fibers) and red (type II and oxidative fibers) skeletal muscles. Red Gastrocnemius and White Gastrocnemius muscles were sampled from 8 week-old female Wistar rats and crude membranes were performed. The Na+,K+-ATPase activity and membrane distribution of Na+,K+-ATPase α1 and α2 isoforms were assessed by ouabain sensitive K-phosphatase (Kpase) measurements and Western Blot respectively. The Na+,K+-ATPase activity was 6 fold lower in White Gastrocnemius membranes than in Red Gastrocnemius membranes. The α1 and α2-isoform levels are higher in RG than in White Gastrocnemius. The α1 and α2-subunit Red Gastrocnemius content was significantly higher than in WG. The correlation between crude membrane Kpase activity and both catalytic α-subunit of the Na+,K+-ATPase exist.These data suggest that the Na+,K+-ATPase phosphatase activity correlates with the α1 and α2 isoforms levels in Red Gastrocnemius and White Gastrocnemius and confirms the fiber-specific Na+,K+-ATPase catalytic α-subunits and α2-isoform as the major catalytic isoform in rat skeletal muscle.


Subject(s)
Muscle Fibers, Skeletal/cytology , Muscle Fibers, Skeletal/enzymology , Muscle, Skeletal/cytology , Muscle, Skeletal/enzymology , Protein Isoforms/metabolism , Sodium-Potassium-Exchanging ATPase/metabolism , Animals , Female , Rats , Rats, Wistar
4.
Cell Mol Biol (Noisy-le-grand) ; 56 Suppl: OL1400-9, 2010 Oct 05.
Article in English | MEDLINE | ID: mdl-21062574

ABSTRACT

Holistica Laboratories (Eguilles, France) developed the nutritional supplements Omegacoeur® and Doluperine® based on two of the most ancient and unique dietary health traditions. Omegacoeur® is formulated to supply key active components of Mediterranean diet (omega 3,6,9 fatty acids, garlic, and basil) and the formulation of Doluperine® was based on the Ayurvedic tradition (curcuma, pepper, ginger extracts). Interestingly, recent studies suggest that an combination of the ingredients supplied by these two supplements could provide additional and previously unanticipated benefit through synergistic actions of some of their key components. However, the effect of such combination on human cell viability has not been investigated. In this present article, a review of the various effects of the individual compounds of the new combination and the reported active doses, and the result of a study of an combination of Omegacoeur® / Dolupérine® on Human Embryonic Kidney (HEK 293) cells. Incremental doses of 4 Omegacoeur® / Dolupérine® combinations prepared so that the molar ratio DHA (Docosahexaenoic acid) in Omegacoeur® / curcumin in Dolupérine® was kept constant, at 2.5 DHA / 1 curcumin, were added to the culture media. After 24h of incubation, cell viability was assessed by the trypan blue exclusion method. The data suggest that the combination of Omegacoeur® with Dolupérine® does not affect HEK 293 cells viability in the range of doses that have demonstrated beneficial effects in earlier studies.


Subject(s)
Dietary Supplements/toxicity , Cell Survival/drug effects , Docosahexaenoic Acids/pharmacology , Fatty Acids, Omega-3/pharmacology , Fatty Acids, Omega-6/pharmacology , HEK293 Cells , Humans , Oils, Volatile/pharmacology
5.
Neurochirurgie ; 55 Suppl 1: S92-103, 2009 Mar.
Article in French | MEDLINE | ID: mdl-19230940

ABSTRACT

Na/K-ATPase electrogenic activity and its indispensable role in maintaining gradients suggest that the modifications in isoform distribution and the functioning of the sodium pump have a major influence on both the neuronal functions, including excitability, and motor efficiency. This article proposes to clarify the involvement of Na/K-ATPase in the transmission of nerve influx within the peripheral nerve and then in the genesis, the maintenance, and the physiology of muscle contraction by comparing the data found in the literature with our work on neuron and muscle characterization of Na/K-ATPase activity and isoforms.


Subject(s)
Energy Metabolism/physiology , Neuromuscular Junction/physiology , Sodium-Potassium-Exchanging ATPase/physiology , Synaptic Transmission/physiology , Animals , Female , Humans , Isoenzymes/metabolism , Neuromuscular Junction/enzymology , Neuromuscular Junction/ultrastructure , Rats , Rats, Wistar , Sodium-Potassium-Exchanging ATPase/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL