Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
J Exp Zool A Ecol Integr Physiol ; 339(1): 46-62, 2023 01.
Article in English | MEDLINE | ID: mdl-36052497

ABSTRACT

Pest management using attractive and/or repellent semiochemicals is a key alternative to synthetic insecticides. Its implementation requires a good understanding of the intra- and interspecific chemical interactions of arthropod pests, their interactions with their abiotic environment, as well as their evolutionary dynamics. Although mites include many pest species and biocontrol agents of economic importance in agriculture, their chemical ecology is largely understudied compared to insects. We developed a high-throughput ethomics system to analyze these small arthropods and conducted a study on Dermanyssus gallinae, a problematic poultry parasite in the egg industry. Our purpose was to elucidate the role played by host-derived odorants (synthetic kairomone) and conspecific odorants (mite body odors) in D. gallinae. After validating our nanocomputer controlled olfactometric system with volatile semiochemicals of known biological activity, we characterized response traits to kairomonal and/or pheromonal volatile blends in mites from different populations. We were able to accurately characterize the repulsion or attraction behaviors in >1000 individual specimens in a standardized way. Our results confirm the presence of a volatile aggregation pheromone emitted by D. gallinae and bring new elements to the effect of odor source presentation. Our results also confirm the attractive effect on Dermanyssus gallinae of a blend of volatile compounds contained in hen odor, while highlighting a repellent effect at high concentration. Significant interindividual and interpopulation variation was noted particularly in responses to synthetic kairomone. This information lays a valuable foundation for further exploring the emergence risk of resistance to semiochemicals.


Subject(s)
Arthropods , Mite Infestations , Mites , Poultry Diseases , Animals , Female , Mites/physiology , Mite Infestations/veterinary , Chickens/parasitology , Poultry Diseases/parasitology , Pheromones/pharmacology
2.
Pest Manag Sci ; 78(10): 4151-4165, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35674477

ABSTRACT

BACKGROUND: A thorough knowledge of the population dynamics of pests and of the main factors affecting population growth is an important prerequisite for the development of effective control strategies. Failures of various treatments aimed at regulating populations of Dermanyssus gallinae are regularly reported in poultry farms and pullulations occur very quickly after first detection. To finely characterize population dynamics of D. gallinae, and to identify the factors modulating population growth, we conducted two successive multi-generation experiments using closed mesocosms equipped with or without automatic counters and housing a host full- or part-time (three nights per week). RESULTS: Population growth was very rapid and the adult to juvenile ratio very different from the prediction by a mathematical model. A male-biased sex ratio was observed in some mesocosms from 21 days and in most mesocosms from 35 days of population growth originating from an inoculum of adult females. A dramatic slowdown in growth was measured in mesocosms equipped with trackers, where the mites' path to the host was constrained. The slowdown in population growth induced by the intermittent presence of the host compared to its full-time presence was much less marked. CONCLUSION: These findings suggest avenues of research for new management methods. They question the relevance of a critical threshold based on traditional trap monitoring to manage D. gallinae. Our results highlight a unique characteristic of D. gallinae that makes it a recalcitrant case to threshold-based practices recommended for integrated pest management (IPM) against other arthropod pests. The dramatic effect of a physical constraint for the mite to access the host (unnatural constrained path) confirms an observation made in 1917 and is a reason to design perches that are less conducive to parasite traffic. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Mite Infestations , Mites , Poultry Diseases , Animals , Chickens , Female , Male , Mite Infestations/epidemiology , Mite Infestations/parasitology , Mite Infestations/veterinary , Mites/physiology , Population Dynamics , Population Growth , Poultry , Poultry Diseases/epidemiology , Poultry Diseases/parasitology
3.
J Exp Zool A Ecol Integr Physiol ; 335(6): 552-563, 2021 07.
Article in English | MEDLINE | ID: mdl-34038036

ABSTRACT

Stimulating the regulation of pests by their natural enemies is a way to improve the sustainability of agriculture and respect for the environment. However, the presence of natural enemies does not guarantee the existence of a pest control service. To what extent are predatory mites commonly found in henhouses actually able to regulate a major egg industry pest mite, Dermanyssus gallinae? To answer this question, we have experimentally recreated portions of a poultry house ecosystem allowing the development of the pest over several generations in the presence of a chick and detritivorous mites (Astigmata) that are ubiquitous and abundant in layer farms. In these conditions, we compared the growth of D. gallinae populations in the presence and absence of native predatory arthropods. No effect of native predators on the growth of the D. gallinae population could be detected despite high initial predator-to-prey ratios and satisfactory growth of predator populations. Prey switching to the alternative prey Astigmata likely dilutes the effect of predation on the target prey. Further exploration is needed to see whether action could be taken to enhance the effect of top-down regulation.


Subject(s)
Arthropods/physiology , Chickens/parasitology , Mite Infestations/veterinary , Pest Control, Biological/methods , Poultry Diseases/parasitology , Predatory Behavior/physiology , Animals , Mite Infestations/therapy , Poultry Diseases/therapy
SELECTION OF CITATIONS
SEARCH DETAIL