ABSTRACT
ETHNOPHARMACOLOGICAL RELEVANCE: The plants of the genus Casimirella ampla (Miers) (C. ampla) are extensively used in folk medicine. For a long time, rural communities have been using extracts from its roots for food and therapeutic purposes. The extract is rich in diterpenoid annonalide (Annona), which has antiophidic, anti-inflammatory and antinociceptive properties. Inflammation is the body's primary defense mechanism against cell damage and invasion by pathogens, which can trigger acute and chronic inflammatory processes. The first line of treatment for this condition consists of the use of non-steroidal anti-inflammatory drugs, but these have numerous associated collateral damages, based on scientific knowledge about diterpenoids from C. ampla, as well as their already reported antinociceptive and anti-inflammatory properties. AIMS OF THE STUDY: Evaluate the effect of Annona in classic models of inflammation and pain. MATERIALS AND METHODS: Animals were pretreated with Annona (0.1, 1.0 and 10 mg/kg), or Tween 80 (2%), or indomethacin (Indo) (10 mg/kg) orally in the paw edema tests induced by carrageenan (Cg), serotonin (5-HT), histamine, bradykinin, 48/80 and, prostaglandin E2 (PGE2), evaluating microscopic lesion scores, migration of leukocytes to the peritoneal cavity, concentration of myeloperoxide (MPO), malonyldialdehyde (MDA) and glutathione (GSH), abdominal contortion test by acetic acid and formalin test. RESULTS: Treatment with Annona compound at a dose of 0.1 mg/kg was more effective in reducing inflammatory, oxidant and nociceptive parameters, as it reduced paw edema induced by carrageenan, through different mediators and migration of inflammatory cells. Furthermore, it worked by reducing the concentration of MPO, MDA, preserving GSH levels and reducing nociception caused by formalin and acetic acid.
Subject(s)
Analgesics , Magnoliopsida , Animals , Carrageenan , Analgesics/adverse effects , Plant Extracts/adverse effects , Anti-Inflammatory Agents/adverse effects , Inflammation/drug therapy , Glutathione/metabolism , Magnoliopsida/metabolism , Acetates , Edema/chemically induced , Edema/drug therapy , Edema/metabolismABSTRACT
Photobiomodulation therapy (PBMT) is a non-thermal therapeutic procedure widely used in clinical practice. It is considered an effective modality of treatment for the control of various inflammatory conditions with fewer adverse effects as compared to conventional therapy. However, despite the clinical effects, the mechanisms of action and dosimetric parameters of PBMT are not fully understood. This study was performed to describe the effects of two different doses of PBMT on experimental models of inflammation. Male Swiss mice were administered with 0.9% of saline or phlogistic agents (carrageenan, dextran, serotonin, histamine, or bradykinin) by intra-plantar injection and were treated with PBMT at a dose of 1 or 5 J/cm2; right after, the variation of the paw volume was made, and histopathological analysis and myeloperoxidase assay of the carrageenan-induced edematous paw tissues were performed. The action of PBMT on carrageenan-induced vascular permeability was further evaluated. Our results showed that PBMT (1 J/cm2) led to an improvement in paw edema induced by the phlogistic agents and further reduced the histological scores. Inhibition of neutrophil migration was observed following the administration of 1 and 5 J/cm2 of PBMT. However, only 1 J/cm2 of PBMT showed beneficial effects on carrageenan-induced edema. Laser at a dose of 1 J/cm2 showed cellular and vascular effects since it was able to reverse all the inflammatory parameters, and laser at a dose of 5 J/cm2 probably has only cellular effects in the presence of acute inflammation.
Subject(s)
Low-Level Light Therapy , Animals , Anti-Inflammatory Agents/therapeutic use , Edema/chemically induced , Inflammation/radiotherapy , Male , Mice , Models, Theoretical , Rats , Rats, WistarABSTRACT
AIM: The aim of the present study was to investigate the anti-inflammatory response mediated of the M1 muscarinic acetylcholine receptor (mAChR) during experimental colitis. MATERIAL AND METHODS: After the induction of 6% acetic acid colitis, mice were treated with McN-A-343 0.5, 1.0, and 1.5 mg/kg or dexamethasone (DEXA, 2.0 mg/kg) or pirenzepine (PIR, 10 mg/kg; M1 mAChR antagonist). Colonic inflammation was assessed by macroscopic and microscopic lesion scores, colonic wet weight, myeloperoxidase (MPO) activity, interleukin-1 beta (IL1-ß) levels and tumor necrosis factor alpha (TNF-α), glutathione (GSH), malondialdehyde (MDA) and nitrate and nitrite (NO3/NO2), mRNA expression of IKKα, nuclear factor kappa beta (NF-kB) and cyclooxygenase-2 (COX-2), as well protein expression of NF-kB and COX-2. RESULTS: Treatment with McN-A-343 at a concentration of 1.5 mg/kg showed a significant reduction in intestinal damage as well as a decrease in wet weight, MPO activity, pro-inflammatory cytokine concentration, markers of oxidative stress and expression of inflammatory mediators. The action of the M1 agonist by the administration of pirenzepine, which promoted the blocking of the mAChR M1-mediated anti-inflammatory response, has also been proven. CONCLUSION: The results suggest that peripheral colonic M1 mAChR is involved in reversing the pro-inflammatory effect of experimentally induced colitis, which may represent a promising therapeutic alternative for patients with ulcerative colitis.
Subject(s)
(4-(m-Chlorophenylcarbamoyloxy)-2-butynyl)trimethylammonium Chloride/pharmacology , Colitis, Ulcerative/drug therapy , (4-(m-Chlorophenylcarbamoyloxy)-2-butynyl)trimethylammonium Chloride/metabolism , Animals , Colitis/drug therapy , Colitis/metabolism , Colitis, Ulcerative/metabolism , Colon/metabolism , Cyclooxygenase 2/metabolism , Cytokines/metabolism , Dexamethasone/pharmacology , Disease Models, Animal , Glutathione/metabolism , Inflammation/pathology , Inflammation Mediators/metabolism , Interleukin-1beta/metabolism , Male , Malondialdehyde/metabolism , Mice , Muscarinic Agonists/pharmacology , NF-kappa B/metabolism , Oxidative Stress/drug effects , Receptor, Muscarinic M1 , Tumor Necrosis Factor-alpha/metabolismABSTRACT
Inflammatory Bowel Disease (IBD) is idiopathic, chronic and affects the gastrointestinal tract. It results from the association of genetic, environmental and immune deregulation, which culminates in the development and progression of the inflammatory process. In an attempt to reverse colonic inflammation, endogenous systems involved in intestinal physiology are studied and the cholinergic system is fundamental for this process. In addition, this system has anti-inflammatory action in experimental models of IBD. Another important endogenous system in regulating the exacerbated inflammatory response in the gut is mediated by endocannabinoids, which play an important role in restoring bowel functionality after the onset of the inflammatory process. There are several reports in the literature showing the interconnection between the cannabinoid and cholinergic systems in different tissues. Considering that the activation of the cholinergic system stimulates the production of cannabinoid agonists in the intestine, our hypothesis is that the interaction between the muscarinic system and the cannabinoid in the control of intestinal inflammation is mediated by endogenous cannabinoids, since they are stimulated by the activation of muscarinic receptors.
Subject(s)
Cannabinoid Receptor Agonists , Cannabinoids , Inflammation , Intestinal Diseases , Cholinergic Agents , Endocannabinoids , Humans , Intestinal Diseases/metabolism , Receptors, CannabinoidABSTRACT
ETHNOPHARMACOLOGICAL RELEVANCE: There are many reports of pharmacological activities of extracts and fractions of different vegetable-derived products in the scientific literature and in folk medicine. Ethnopharmacological use of these products by various communities continues to be extensively explored, and they account for more than half of all medications used worldwide. Polysaccharides (PLS) extracted from plants such as Morinda Citrifolia Linn present therapeutic potential in treatment of inflammatory bowel diseases (IBD) such as ulcerative colitis (UC). AIM OF THE STUDY: To evaluate the anti-inflammatory action of Noni-PLS against the intestinal damage in UC induced by acetic acid in mice. MATERIALS AND METHODS: In acetic acid-induced colitis, the mice were treated intraperitoneally (ip) with Noni-PLS (0.1, 0.3, and 3.0â¯mg/kg) or subcutaneously (sc) with dexamethasone (2.0â¯mg/kg) 30â¯min before euthanasia to determine the best dose of Noni-PLS with an anti-inflammatory effect in the course of UC. The colonic tissue samples were collected for macroscopic, wet weight, microscopic and biochemical (myeloperoxidase (MPO), glutathione (GSH), malondialdehyde (MDA), nitrate/nitrite (NO3/NO2), cytokines, cyclooxygenase (COX-2) and inducible nitric oxide (iNOS)) analyses. RESULTS: Treatment with Noni-PLS reduced the intestinal damage induced by acetic acid as it reduced macroscopic and microscopic scores and the wet weight of the colon. In addition, MPO activity and levels of GSH, MDA, NO3/NO2, pro-inflammatory cytokines, and COX-2 expression reduced. CONCLUSIONS: This study suggests that Noni-PLS exhibits anti-inflammatory action against intestinal damage by reducing inflammatory cell infiltration, oxidative stress, pro-inflammatory action of cytokines, COX-2 and iNOS expression in the inflamed colon. Noni-PLS shows therapeutic potential against inflammatory disorders like UC.
Subject(s)
Anti-Inflammatory Agents/therapeutic use , Colitis/drug therapy , Morinda , Polysaccharides/therapeutic use , Acetic Acid , Animals , Anti-Inflammatory Agents/pharmacology , Colitis/chemically induced , Colitis/metabolism , Colitis/pathology , Colon/drug effects , Colon/metabolism , Colon/pathology , Cyclooxygenase 2/metabolism , Fruit , Glutathione/metabolism , Interleukin-1beta/metabolism , Male , Malondialdehyde/metabolism , Mice , Nitrates/metabolism , Nitric Oxide Synthase Type II/metabolism , Nitrites/metabolism , Peroxidase/metabolism , Polysaccharides/pharmacology , Tumor Necrosis Factor-alpha/metabolismABSTRACT
Latex proteins from P. pudica (LPPp) have anti-inflammatory activity. In the present study, LPPp was evaluated to protect animals against inflammatory ulcerative colitis (UC). UC was induced by intracolonic instillation of a 6% acetic acid solution and the animals received LPPp (10, 20 or 40â¯mg/kg) by intraperitoneal route 1â¯h before and 17â¯h after acetic acid injection. Eighteen hours after instillation of acetic acid, the mice were euthanized and the colons were excised to determine the wet weight, macroscopic and microscopic lesion scores, myeloperoxidase (MPO) activity, IL1-ß levels, glutathione (GSH) and malondialdehyde (MDA) concentration and superoxide dismutase (SOD) activity. The results revealed that LPPp treatment (40â¯mg/kg) had a protective effect on acetic acid-induced colitis by reducing the wet weight, macroscopic and microscopic scores of intestinal lesions and colonic MPO activity. Additionally, LPPp inhibited tissue oxidative stress, since decreases in GSH consumption, MDA concentration and SOD activity were observed. The treatment with LPPp reduced the levels of cytokine IL-1ß, contributing to the reduction of colon inflammation. Biochemical investigation showed that LPPp comprises a mixture of proteins containing proteinases, chitinases and proteinase inhibitors. These data suggest that LPPp has a protective effect against intestinal damage through mechanisms that involve the inhibition of inflammatory cell infiltration, cytokine release and oxidative stress.
Subject(s)
Apocynaceae/chemistry , Colitis/drug therapy , Latex/pharmacology , Plant Proteins/pharmacology , Acetic Acid , Animals , Apocynaceae/metabolism , Colitis/chemically induced , Colitis/metabolism , Colon/drug effects , Cytokines/metabolism , Glutathione/metabolism , Inflammation/drug therapy , Interleukin-1beta/metabolism , Intestines/pathology , Latex/isolation & purification , Male , Mice , Oxidative Stress/drug effects , Plant Proteins/isolation & purification , Protective Agents/pharmacology , Tumor Necrosis Factor-alpha/metabolismABSTRACT
Polysaccharides extracted from plants are very promising molecules in the field of pharmacotherapy. Knowing this, the aim of this study was to extract, characterize and evaluate the action of the polysaccharide of Morinda citrifolia Linn (Noni-PLS) in biological models of inflammatory processes. The characterization tests shown that sample refers to a heteropolysaccharide composed mainly of homogalacturonan and rhamnogalacturonan. This polysaccharide at dose of 10â¯mg/kg, when tested in our models of inflammation, showed significant activity in reducing carrageenan-induced paw oedema as well as all mediators edemas. This polysaccharide was able to inhibit the migration of leukocytes to the site of inflammation, and still reduced inflammatory nociception tests. This results, allows us to conclude that the polysaccharide extracted from Morinda citrifolia linn has anti-inflammatory potential since it reversed inflammatory parameters such as edema, leukocyte migration and nociception.