Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Int J Pharm ; 618: 121656, 2022 Apr 25.
Article in English | MEDLINE | ID: mdl-35278601

ABSTRACT

Atopic dermatitis (AD) is a chronic disease that affects the skin, and that is characterized by highly itchy inflammation, frequent eczematous lesions, and a fluctuating course. The current treatment consists of a multi-stage approach that aims to establish persistent disease control towards the improvement of the quality of life of the patients. Topical therapy is the basis of AD treatment, however, due to the difficulty of crossing the skin barrier, topical application of drugs remains a challenge. In fact, in addition to the low skin bioavailability, and limited accessibility to deeper skin of the drugs - due to difficulty in penetrating the epidermis - implemented drugs in the clinical are associated with serious adverse effects, which are responsible for safety and efficacy limitations, leading to a reduction in patients' compliance. Nanotechnology arises as an emerging approach for the treatment of AD, allowing for controlled release, targeted delivery, improved penetration, and bioavailability of drugs assets, resulting in marked improved therapeutic efficacy and reduction of adverse effects. Although its promising outputs, additional studies are needed to recognize the toxicological characteristics, cost-benefit, and long-term safety of nanocarriers applied to this end. Advanced drug delivery systems, particularly nanoemulsions, liposomes, ethosomes, transfersomes, solid lipid nanoparticles, nanostructured lipid carriers, nanocrystals, polymeric nanoparticles, and polymeric micelles have been used, and are thoroughly addressed in this review as promising nanoformulations towards the topical treatment of AD.


Subject(s)
Dermatitis, Atopic , Nanoparticles , Administration, Cutaneous , Dermatitis, Atopic/drug therapy , Drug Carriers/chemistry , Humans , Liposomes/therapeutic use , Quality of Life
3.
Acta Biomater ; 142: 14-35, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35202853

ABSTRACT

Hair care and treatment has evolved significantly through the years as new formulations are continuously being explored in an attempt to meet the demand in cosmetic and medicinal fields. While standard hair care procedures include hair washing, aimed at hair cleansing and maintenance, as well as hair dyeing and bleaching formulations for hair embellishment, modern hair treatments are mainly focused on circumventing hair loss conditions, strengthening hair follicle properties and treat hair infestations. In this regard, active compounds (ACs) included in hair cosmetic formulations include a vast array of hair cleansing and hair dye molecules, and typical hair treatments include anti-hair loss ACs (e.g. minoxidil and finasteride) and anti-lice ACs (e.g. permethrin). However, several challenges still persist, as conventional AC formulations exhibit sub-optimal performance and some may present toxicity issues, calling for an improved design of formulations regarding both efficacy and safety. More recently, nano-based strategies encompassing nanomaterials have emerged as promising tailored approaches to improve the performance of ACs incorporated into hair cosmetics and treatment formulations. The interest in using these nanomaterials is based on account of their ability to: (1) increase stability, safety and biocompatibility of ACs; (2) maximize hair affinity, contact and retention, acting as versatile biointerfaces; (3) enable the controlled release of ACs in both hair and scalp, serving as prolonged AC reservoirs; besides offering (4) hair follicle targeting features attending to the possibility of surface tunability. This review covers the breakthrough of nanomaterials for hair cosmetics and hair treatment, focusing on organic nanomaterials (polymer-based and lipid-based nanoparticles) and inorganic nanomaterials (nanosheets, nanotubes and inorganic nanoparticles), as well as their applications, highlighting their potential as innovative multifunctional nanomaterials towards maximized hair care and treatment. STATEMENT OF SIGNIFICANCE: This manuscript is focused on reviewing the nanotechnological strategies investigated for hair care and treatment so far. While conventional formulations exhibit sub-optimal performance and some may present toxicity issues, the selection of improved and suitable nanodelivery systems is of utmost relevance to ensure a proper active ingredient release in both hair and scalp, maximize hair affinity, contact and retention, and provide hair follicle targeting features, warranting stability, efficacy and safety. This innovative manuscript highlights the advantages of nanotechnology-based approaches, particularly as tunable and versatile biointerfaces, and their applications as innovative multifunctional nanomaterials towards maximized hair care and treatment.


Subject(s)
Cosmetics , Hair Preparations , Nanostructures , Hair , Hair Preparations/pharmacology , Nanotechnology
SELECTION OF CITATIONS
SEARCH DETAIL
...