Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Prostaglandins Other Lipid Mediat ; 172: 106833, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38460760

ABSTRACT

Smoking causes several diseases such as chronic obstructive pulmonary disease (COPD). Aspirin-triggered-resolvin D1 (AT-RvD1) is a lipid mediator produced during the resolution of inflammation and demonstrates anti-inflammatory and pro-resolution effects in several inflammatory experimental models including in the airways. Here we evaluated the role of AT-RvD1 (100 nM) in bronchial epithelial cells (BEAS-2B) stimulated by cigarette smoke extract (CSE; 1%; 1 cigarette) for 24 h. CSE induced the productions of IL-1ß, TNF-α, IL-10, IL-4 and IFN-γ as well as the activations of NF-κB and STAT3 and the expression of ALX/FPR2 receptor. AT-RvD1 reduced the IL-1ß and TNF-α production and increased the production of IFN-γ. These effects were reversed BOC2, an antagonist of ALX/FPR2 receptor for AT-RvD1. The production of IL-4 and IL-10 were not altered by AT-RvD1. In addition, AT-RvD1 reduced the phosphorylation of NF-κB and STAT3 when compared to CSE-stimulated BEAS-2B cells. No alteration of ALX/FPR2 expression was observed by AT-RvD1 when compared to CSE group. In the human monocytic leukemia cell line, the relative number of copies of IL-1ß and IL-4 was significantly higher in CSE + AT-RvD1 group compared CSE group, however, the expression of M1 cytokine was more pronounced than M2 profile. AT-RvD1 could be an important target for the reduction of inflammation in the airways associated with smoking.


Subject(s)
Anti-Inflammatory Agents , Aspirin , Bronchi , Docosahexaenoic Acids , Epithelial Cells , Humans , Docosahexaenoic Acids/pharmacology , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Bronchi/drug effects , Bronchi/cytology , Bronchi/metabolism , Aspirin/pharmacology , Anti-Inflammatory Agents/pharmacology , NF-kappa B/metabolism , STAT3 Transcription Factor/metabolism , Cell Line , Smoke/adverse effects , Cytokines/metabolism , Nicotiana , Receptors, Lipoxin/metabolism
2.
Inflammation ; 45(3): 1269-1280, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35015189

ABSTRACT

Cryptococcosis (caused, for example, by Cryptococcus neoformans) and allergic asthma (caused, for example, by Dermatophagoides pteronyssinus) target the respiratory tract (the lung and bronchial epithelium). C. neoformans and D. pteronyssinus can coexist in the same indoor environment, and exposure to both can cause alterations in the local airway inflammatory milieu and exacerbation of airway inflammatory diseases. Here, we evaluated the effects of the association between C. neoformans and D. pteronyssinus in the modulation of airway inflammatory responses in an in vitro experimental model using human bronchial epithelial cells. BEAS-2B cells were cultivated and stimulated with D. pteronyssinus (10 µg/mL) and/or C. neoformans (MOI 100) for 24 h. No cytotoxic effect was observed in cells stimulated by C. neoformans and/or D. pteronyssinus. The production of IL-8, IL-6, and/or CCL2, but not IL-10, as well as the activation of NF-kB, STAT3, STAT6, and/or ERK1/2 were increased in cells stimulated by C. neoformans or D. pteronyssinus compared to controls. C. neoformans in association with D. pteronyssinus inhibited the CCL2­ERK1/2 signaling pathway in cells treated with both pathogens compared to cells stimulated by D. pteronyssinus alone. In addition, their association induced an additive effect on the IL-6/STAT3 signaling pathway in cells compared to cells stimulated with D. pteronyssinus or C. neoformans only. D. pteronyssinus increased the internalization and growth of C. neoformans in BEAS-2B cells. D. pteronyssinus in association with C. neoformans promoted pro- and anti-inflammatory responses, which can modulate cryptococcal infection and asthmaticus status.


Subject(s)
Cryptococcosis , Cryptococcus neoformans , Animals , Anti-Inflammatory Agents/pharmacology , Bronchi , Chemokine CCL2/metabolism , Cryptococcosis/metabolism , Cryptococcus neoformans/metabolism , Dermatophagoides pteronyssinus/metabolism , Down-Regulation , Epithelial Cells/metabolism , Humans , Interleukin-6/metabolism , MAP Kinase Signaling System , STAT3 Transcription Factor/metabolism
3.
Inflammopharmacology ; 29(5): 1603-1612, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34405339

ABSTRACT

BACKGROUND: The interaction of Cryptococcus neoformans with airway epithelial cells is crucial for the establishment of cryptococcosis. Aspirin-triggered-resolvin D1 (AT-RvD1) is a lipid mediator produced during the resolution of inflammation and demonstrates anti-inflammatory and pro-resolution effects in several inflammatory experimental models including in the airways. METHOD: Here, we evaluated the effects of AT-RvD1 (1, 10 or 100 nM) on human bronchial epithelial cells (BEAS-2B) stimulated with C. neoformans (1, 10 or 100 multiplicities of infection; MOI). RESULTS: After 24 h, C. neoformans (all MOI) demonstrated no cytotoxic effects and increased IL-8 production on BEAS-2B cells when compared to controls. In addition, C. neoformans (MOI 100) increased the concentration of IL-6, but not of IL-10. AT-RvD1 (100 nM) significantly reduced the concentration of IL-8 and IL-6 and increased IL-10 production in C. neoformans-stimulated BEAS-2B cells. C. neoformans increased the phosphorylation of NF-κB and ERK1/2, and ALX/FPR2 expression. AT-RvD1 reduced the activation of NF-kB without altering the ERK1/2 and ALX/FPR2 expression. The anti-inflammatory effects of AT-RvD1 were dependent on the ALX/FPR2, once its antagonist (BOC2) reversed its anti-inflammatory effects. No alteration on the fungal burden as well as interactions with BEAS-2B cells was observed by AT-RvD1. CONCLUSION: AT-RvD1 demonstrated significant anti-inflammatory effects in bronchial epithelial cells infected with C. neoformans without affecting the development of C. neoformans infection in the airways. TRIAL REGISTRATION: Not applicable.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Cryptococcosis/drug therapy , Docosahexaenoic Acids/pharmacology , Inflammation/drug therapy , Anti-Inflammatory Agents/administration & dosage , Bronchi/cytology , Bronchi/microbiology , Bronchi/pathology , Cell Line , Cryptococcosis/pathology , Cryptococcus neoformans/isolation & purification , Docosahexaenoic Acids/administration & dosage , Dose-Response Relationship, Drug , Epithelial Cells/drug effects , Epithelial Cells/microbiology , Epithelial Cells/pathology , Humans , Inflammation/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...