Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
NanoImpact ; 24: 100355, 2021 10.
Article in English | MEDLINE | ID: mdl-35559814

ABSTRACT

The use of bisphosphonates constitutes the gold-standard therapy for the control and treatment of bone diseases. However, its long-term use may lead to gastric problems, which limits the treatment. Thus, this study aimed to formulate a nanostructured system with biodegradable polymers for the controlled release of alendronate sodium. The nanoparticles were characterized, and its gastric toxicity was investigated in rats. The synthesis process proved to be effective for encapsulating alendronate sodium, exhibiting nanoparticles with an average size of 51.02 nm and 98.5% of alendronate sodium incorporation. The release tests demonstrated a controlled release of the drug in 420 min, while the morphological analyzes showed spherical shapes and no apparent roughness. The biological tests demonstrated that the alendronate sodium nanoformulation reversed the gastric lesions, maintaining the normal levels of malondialdehyde and myeloperoxidase. Also, the encapsulated alendronate sodium showed no toxicity in murine osteoblastic cells, even at high concentrations.


Subject(s)
Alendronate , Nanoparticles , Alendronate/toxicity , Animals , Delayed-Action Preparations/pharmacology , Gastric Mucosa , Mice , Nanoparticles/toxicity , Polymers/pharmacology , Rats
2.
Sci Rep ; 10(1): 10327, 2020 06 25.
Article in English | MEDLINE | ID: mdl-32587287

ABSTRACT

Candida albicans is a major cause of human infections, ranging from relatively simple to treat skin and mucosal diseases to systemic life-threatening invasive candidiasis. Fungal infections treatment faces three major challenges: the limited number of therapeutic options, the toxicity of the available drugs, and the rise of antifungal resistance. In this study, we demonstrate the antifungal activity and mechanism of action of peptides ToAP2 and NDBP-5.7 against planktonic cells and biofilms of C. albicans. Both peptides were active against C. albicans cells; however, ToAP2 was more active and produced more pronounced effects on fungal cells. Both peptides affected C. albicans membrane permeability and produced changes in fungal cell morphology, such as deformations in the cell wall and disruption of ultracellular organization. Both peptides showed synergism with amphotericin B, while ToAP2 also presents a synergic effect with fluconazole. Besides, ToAP2 (6.25 µM.) was able to inhibit filamentation after 24 h of treatment and was active against both the early phase and mature biofilms of C. albicans. Finally, ToAP2 was protective in a Galleria mellonella model of infection. Altogether these results point to the therapeutic potential of ToAP2 and other antimicrobial peptides in the development of new therapies for C. albicans infections.


Subject(s)
Antifungal Agents/pharmacology , Biofilms/drug effects , Candida albicans/drug effects , Candidiasis/drug therapy , Pore Forming Cytotoxic Proteins/pharmacology , Amphotericin B/pharmacology , Amphotericin B/therapeutic use , Animals , Antifungal Agents/therapeutic use , Candidiasis/microbiology , Cell Membrane Permeability/drug effects , Cell Wall/drug effects , Disease Models, Animal , Drug Resistance, Fungal , Drug Synergism , Drug Therapy, Combination/methods , Fluconazole/pharmacology , Fluconazole/therapeutic use , Humans , Microbial Sensitivity Tests , Moths , Pore Forming Cytotoxic Proteins/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...