Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Antibiotics (Basel) ; 13(6)2024 May 28.
Article in English | MEDLINE | ID: mdl-38927166

ABSTRACT

Helichrysum italicum (immortelle) essential oil is one of the most popular essential oils worldwide and it has many beneficial properties, including antimicrobial. However, in this plant, the chemical diversity of the essential oil is very pronounced. The aim of this work was to process the GC-MS results of four samples of H. italicum essential oil of Serbian origin by chemometric tools, and evaluate the antimicrobial activity in vitro and in silico. Overall, 47 compounds were identified, the most abundant were γ-curcumene, α-pinene, and ar-curcumene, followed by α-ylangene, neryl acetate, trans-caryophyllene, italicene, α-selinene, limonene, and italidiones. Although the four samples of H. italicum essential oil used in this study were obtained from different producers in Serbia, they belong to the type of essential oil rich in sesquiterpenes (γ-curcumene and ar-curcumene chemotype). In vitro antimicrobial potential showed that five were sensitive among ten strains of tested microorganisms: Staphylococcus aureus, Listeria monocytogenes, Bacillus cereus, Saccharomyces cerevisiae, and Candida albicans. Therefore, these microorganism models were used further for in silico molecular docking through the mechanism of ATP-ase inhibitory activity. Results showed that among all compounds from H. italicum essential oil, neryl acetate has the highest predicted binding energy. Artificial neural network modeling (ANN) showed that two major compounds γ-curcumene and α-pinene, as well as minor compounds such as trans-ß-ocimene, terpinolene, terpinene-4-ol, isoitalicene, italicene, cis-α-bergamotene, trans-α-bergamotene, italidiones, trans-ß-farnesene, γ-selinene, ß-selinene, α-selinene, and guaiol are responsible for the antimicrobial activity of H. italicum essential oil. The results of this study indicate that H. italicum essential oil samples rich in γ-curcumene, α-pinene, and ar-curcumene cultivated in Serbia (Balkan) have antimicrobial potential both in vitro and in silico. In addition, according to ANN modeling, the proportion of neryl acetate and other compounds detected in these samples has the potential to exhibit antimicrobial activity.

2.
Foods ; 13(11)2024 May 25.
Article in English | MEDLINE | ID: mdl-38890887

ABSTRACT

This study investigates the applicability of the Peleg model to the osmotic dehydration of various sweet potato variety samples in sugar beet molasses, addressing a notable gap in the existing literature. The osmotic dehydration was performed using an 80% sugar beet molasses solution at temperatures of 20 °C, 35 °C, and 50 °C for periods of 1, 3, and 5 h. The sample-to-solution ratio was 1:5. The objectives encompassed evaluating the Peleg equation's suitability for modeling mass transfer during osmotic dehydration and determining equilibrium water and solid contents at various temperatures. With its modified equation, the Peleg model accurately described water loss and solid gain dynamics during osmotic treatment, as evidenced by a high coefficient of determination value (r2) ranging from 0.990 to 1.000. Analysis of Peleg constants revealed temperature and concentration dependencies, aligning with previous observations. The Guggenheim, Anderson, and de Boer (GAB) model was employed to characterize sorption isotherms, yielding coefficients comparable to prior studies. Effective moisture diffusivity and activation energy calculations further elucidated the drying kinetics, with effective moisture diffusivity values ranging from 1.85 × 10-8 to 4.83 × 10-8 m2/s and activation energy between 7.096 and 16.652 kJ/mol. These findings contribute to understanding the complex kinetics of osmotic dehydration and provide insights into the modeling and optimization of dehydration processes for sweet potato samples, with implications for food processing and preservation methodologies.

3.
Antioxidants (Basel) ; 13(3)2024 Feb 25.
Article in English | MEDLINE | ID: mdl-38539814

ABSTRACT

The concepts of "green chemistry" are gaining importance in the agri-food sector due to the need to minimize pollution from toxic chemicals, improve the safety and sustainability of industrial processes, and provide "clean-labeled products" required by consumers. The application of the cloud point extraction (CPE) is considered a promising alternative to conventional organic solvents. In the CPE, the separation of compounds from the bulk solution occurs by adding a surfactant (either non-ionic or ionic). When the solution is heated to or above a critical temperature, referred to as the cloud point, two phases are formed-micellar and aqueous. Recently, the horizons of the traditional CPE have been increasingly expanding by improved procedures and integration with other techniques, such as the microwave- and ultrasonic-assisted extraction. This article provides an updated overview of the theory and research articles on the CPE from 2018 to 2023 and critically discusses the issues relevant to the potential applicability of the CPE as a promising and green technique for antioxidants recovered from plant materials. Finally, some future perspectives and research needs for improved CPE are presented.

4.
Polymers (Basel) ; 16(2)2024 Jan 07.
Article in English | MEDLINE | ID: mdl-38256977

ABSTRACT

The development of active edible coatings with improved mechanical and barrier properties is a huge challenge. In this study, active edible coatings for sliced cheese have been developed using pullulan (Pull) in combination with two different biopolymers, chitosan (CS) and gelatine (Gel), and a combination of hydrolats as a source of active compounds with antimicrobial effects. In comparison to the monolayer coating, the bilayer coating system demonstrates improved barrier and mechanical properties. A preliminary assessment of the antimicrobial effect of lemongrass and curry plant hydrolats has revealed that both hydrolats exhibited antimicrobial activity against the targeted bacterium Staphylococcus aureus, albeit at different levels. The obtained results suggest that a mixture of 1.56% lemongrass and 12.5% curry plant hydrolats yielded a lower fractional inhibitory concentration (FIC) value. Bilayer coating systems (Pull/CS and Pull/Gel) with an incorporated mixture of hydrolats have demonstrated effectiveness in both cases: artificial contamination before application of the coating system and after application of the coating system. In both contamination scenarios, the coating systems consistently effectively limited bacterial proliferation, indicating the antimicrobial effect of the hydrolat mixture in the coating layers. In the case of artificial contamination before applying the coating system, both coatings demonstrated antimicrobial effectiveness, but the formulation with chitosan had a biocide effect, while the other, with gelatine, had only a bacteriostatic effect in a long-term setting. In the second case, both Pull/CS and Pull/Gel coatings demonstrated effectiveness in inhibiting bacterial growth regardless of the moment of contamination of the sample; the Pull/CS coating showed slightly better antimicrobial activity, achieving complete elimination of bacteria earlier compared with the Pull/Gel coating system.

5.
Foods ; 12(22)2023 Nov 17.
Article in English | MEDLINE | ID: mdl-38002220

ABSTRACT

Kefir is a fermented dairy product claimed to confer many health-promoting effects, but its acidic taste is not appealing to some consumers. Therefore, the aim of this study was to enhance the functional and sensorial quality attributes of kefir through fortification with encapsulated blackberry juice (EBJ). The blackberry juice was successfully encapsulated via freeze-drying using lentil protein isolate (LPI) as the carrier. The encapsulated blackberry juice showed good physicochemical, functional, and morphological properties, as well as microbiological safety for use as a food additive. The kefir was fortified with EBJ in concentrations of 1, 2.5, 5, and 7.5% (w/w), stored for up to 28 days under refrigeration, and periodically evaluated. Parameters such as the viscosity, titrable acidity, and pH indicate that the kefir fortification did not affect its stability during storage. EBJ significantly increased the antioxidant properties of the kefir, depending on the fortification level. Additionally, all the fortified samples provided more anthocyanins than the daily recommended intake. Microbiological profiling demonstrated that good laboratory practice and hygiene were implemented during the experiments. Finally, the panelists showed that higher EBJ concentrations in the kefir resulted in greater overall acceptability, indicating that this encapsulate has the potential to be a substitute synthetic color additive in the dairy industry.

6.
Pathogens ; 12(11)2023 Nov 09.
Article in English | MEDLINE | ID: mdl-38003799

ABSTRACT

The food industry has recognized a pressing need for highly effective disinfection protocols to decrease the risk of pathogen emergence and proliferation in food products. The integration of antimicrobial treatments in food production has occurred as a potential strategy to attain food items of superior quality with respect to microbiological safety and sensory attributes. This study aims to investigate the individual and synergistic effects of heat and peroxyacetic acid on the inactivation of bacterial cells, considering various contact times and environmental conditions. Four Salmonella serotypes, isolated from industrial meat production surfaces, were employed as model organisms. By systematically assessing the impacts of individual factors and synergistic outcomes, the effectiveness of bacterial cell inactivation and the efficiency of heat and peroxyacetic acid could be predicted. To better approximate real-world food processing conditions, this study also incorporated a bovine albumin-rich condition as a simulation of the presence of organic loads in processing steps. The findings revealed the essential need for a synergistic interplay of investigated parameters with the following optimized values: 1.5% concentration of peroxyacetic acid, temperature range of 60-65 °C, and contact time of 3 min for the complete effect regardless of the degree of contamination.

7.
Antibiotics (Basel) ; 12(9)2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37760769

ABSTRACT

The increasing interest in microbiological food safety requires the development of sensitive and reliable analyses and technologies for preserving food products' freshness and quality. Different types of packaging systems are one of the solutions for controlling microbiological activity in foods. During the last decades, the development of biopolymer-based active packaging with essential oil incorporation systems has resulted in technologies with exceptional application potential, primarily in the food industry. There is no doubt that this principle can facilitate food status monitoring, reduce food waste, extend the shelf life, improve the overall quality of food, or indicate a larger problem during the storage, production, and distribution of foodstuffs. On the other hand, most antimicrobial packaging systems are in the development phase, while the sensitivity, selectivity, complexity, and, above all, safety of these materials are just some of the essential questions that need to be answered before they can be widely used. The incorporation of essential oils as antimicrobial substances in biopolymer-based active packaging holds significant promise for enhancing food safety, extending shelf life, and offering more sustainable packaging solutions. While challenges exist, ongoing research and innovation in this field are likely to lead to the development of effective and environmentally friendly packaging systems with enhanced antimicrobial properties.

8.
Antibiotics (Basel) ; 12(3)2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36978494

ABSTRACT

The problem of microbial biofilms has come to the fore alongside food, pharmaceutical, and healthcare industrialization. The development of new antibiofilm products has become urgent, but it includes bioprospecting and is time and money-consuming. Contemporary efforts are directed at the pursuit of effective compounds of natural origin, also known as "green" agents. Mushrooms appear to be a possible new source of antibiofilm compounds, as has been demonstrated recently. The existing modeling methods are directed toward predicting bacterial biofilm formation, not in the presence of antibiofilm materials. Moreover, the modeling is almost exclusively targeted at biofilms in healthcare, while modeling related to the food industry remains under-researched. The present study applied an Artificial Neural Network (ANN) model to analyze the anti-adhesion and anti-biofilm-forming effects of 40 extracts from 20 mushroom species against two very important food-borne bacterial species for food and food-related industries-Listeria monocytogenes and Salmonella enteritidis. The models developed in this study exhibited high prediction quality, as indicated by high r2 values during the training cycle. The best fit between the modeled and measured values was observed for the inhibition of adhesion. This study provides a valuable contribution to the field, supporting industrial settings during the initial stage of biofilm formation, when these communities are the most vulnerable, and promoting innovative and improved safety management.

9.
Materials (Basel) ; 16(2)2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36676379

ABSTRACT

The main focus of this research was the bio-stimulated healing of cracks in lime mortar samples (historical and newly designed). The investigation started from comprehensive characterisation of historical mortars, while in the next stage a compatible conservation mortar was designed and characterised, with special attention given to the contact zone formation between original and conservation mortars. The next step was the design of a bio-stimulating crack-sealing agent, a two-component liquid system: bacteria culture Sporosarcina pasteurii DSM 33 and nutrients. Both historical and conservation mortar samples were used in order to study their potentials for bio-stimulated surface-crack repair. The experiment lasted for 150 days, allowing the ureolytic bacteria Sporosarcina pasteurii DSM 33 to induce the precipitation of calcium carbonate into cracks and heal the damaged surface of the tested materials. The healing phenomenon was continuously monitored during a period of 150 days. Special attention was given to the evaluation of the morphology, chemical and structural characteristics of the deposits created in/on the surface cracks, monitored by optical microscopy, SEM, XRF and XRD analyses. The obtained results present valuable input for the application of the developed system in real environmental conditions as a solution for the future sustainable architectural conservation of traditionally prepared mortars.

10.
Antibiotics (Basel) ; 12(1)2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36671304

ABSTRACT

The main challenge in controlling the microbiological contamination of historical paper is finding an adequate method that includes the use of cost-effective, harmless, and non-toxic biocides whose effectiveness is maintained over time and without adverse effects on cultural heritage and human health. Therefore, this study demonstrated the possibility of using a non-invasive method of historical paper conservation based on plant essential oils (EOs) application. Evaluation of antimicrobial effects of different EOs (lemongrass, oregano, rosemary, peppermint, and eucalyptus) was conducted against Cladosporium cladosporoides, Aspergillus fumigatus, and Penicillium chrysogenum, which are commonly found on archive papers. Using a mixture of oregano, lemongrass and peppermint in ratio 1:1:1, the lower minimal inhibition concentration (0.78%) and better efficiency during a vapour test at the highest tested distance (5.5 cm) compared with individual EOs was proven. At the final step, this EOs mixture was used in the in situ conservation of historical paper samples obtained from the Archives of Vojvodina. According to the SEM imaging, the applied EOs mixture demonstrates complete efficiency in the inhibition of fungi colonization of archive papers, since fungal growth was not observed on samples, unlike the control samples.

11.
Int J Biol Macromol ; 228: 400-410, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36572079

ABSTRACT

Biopolymer-based films present an ideal matrix for the incorporation of active substances such as antimicrobial agents, giving active packaging a framework of green chemistry and a step forward in food packaging technology. The chitosan-gelatine active coating has been prepared using lemongrass oil as an antimicrobial compound applying a different approach. Instead of surfactants, to achieve compatibilization of compounds, ß-cyclodextrin was used to encapsulate lemongrass oil. The antimicrobial effect was assessed using the dip-coating method on freshly harvested cherry tomatoes artificially contaminated by Penicillium aurantiogriseum during 20 days of cold storage. According to the evaluation of the antimicrobial effect of coating formulation on cherry tomato samples, which was mathematically assessed by predictive kinetic models and digital imaging, the applied coating formulation was found to be very effective since the development of fungal contamination for active-coated samples was observed for 20 days.


Subject(s)
Anti-Infective Agents , Chitosan , Cymbopogon , Edible Films , Oils, Volatile , Chitosan/chemistry , Cymbopogon/chemistry , Gelatin , Oils, Volatile/pharmacology , Anti-Infective Agents/chemistry , Food Packaging/methods
12.
Foods ; 13(1)2023 Dec 29.
Article in English | MEDLINE | ID: mdl-38201161

ABSTRACT

This study explores the unexploited potential of Artificial Neural Network (ANN) optimization techniques in enhancing different drying methods and their influence on the characteristics of various sweet potato varieties. Focusing on the intricate interplay between drying methods and the unique characteristics of white, pink, orange, and purple sweet potatoes, the presented experimental study indicates the impact of ANN-driven optimization on food-related characteristics such as color, phenols content, biological activities (antioxidant, antimicrobial, anti-hyperglycemic, and anti-inflammatory), chemical, and mineral contents. The results unveil significant variations in drying method efficacy across different sweet potato types, underscoring the need for tailored optimization strategies. Specifically, purple sweet potatoes emerge as robust carriers of phenolic compounds, showcasing superior antioxidant activities. Furthermore, this study reveals the optimized parameters of dried sweet potato, such as total phenols content of 1677.76 mg/100 g and anti-inflammatory activity of 8.93%, anti-hyperglycemic activity of 24.42%. The upgraded antioxidant capability is presented through DPPH●, ABTS●+, RP, and SoA assays with values of 1500.56, 10,083.37, 3130.81, and 22,753.97 µg TE/100 g, respectively. Additionally, the moisture content in the lyophilized sample reached a minimum of 2.97%, holding favorable chemical and mineral contents. The utilization of ANN optimization proves instrumental in interpreting complex interactions and unlocking efficiencies in sweet potato drying processes, thereby contributing valuable insights to food science and technology.

13.
Article in English | MEDLINE | ID: mdl-36554607

ABSTRACT

Consumption of raw or undercooked meat is responsible for 2.3 million foodborne illnesses yearly in Europe alone. The greater part of this illness is associated with beef meat, which is used in many traditional dishes across the world. Beneath the low microbiological quality of beef lies (pathogenic) bacterial contamination during primary production as well as inadequate hygiene operations along the farm-to-fork chain. Therefore, this study seeks to understand the microbiological quality pathway of minced beef processed for fast-food restaurants over three years using an artificial neural network (ANN) system. This simultaneous approach provided adequate precision for the prediction of a microbiological profile of minced beef meat as one of the easily spoiled products with a short shelf life. For the first time, an ANN model was developed to predict the microbiological profile of beef minced meat in fast-food restaurants according to meat and storage temperatures, butcher identification, and working shift. Predictive challenges were identified and included standardized microbiological analyses that are recommended for freshly processed meat. The obtained predictive models (an overall r2 of 0.867 during the training cycle) can serve as a source of data and help for the scientific community and food safety authorities to identify specific monitoring and research needs.


Subject(s)
Meat Products , Red Meat , Animals , Cattle , Restaurants , Food Microbiology , Meat/analysis , Food Safety , Red Meat/microbiology , Meat Products/microbiology
14.
Life (Basel) ; 12(11)2022 Oct 27.
Article in English | MEDLINE | ID: mdl-36362877

ABSTRACT

Predicting yield is essential for producers, stakeholders and international interchange demand. The majority of the divergence in yield and essential oil content is associated with environmental aspects, including weather conditions, soil variety and cultivation techniques. Therefore, aniseed production was examined in this study. The categorical input variables for artificial neural network modelling were growing year (two successive growing years), growing locality (three different locations in Vojvodina Province, Serbia) and fertilization type (six different treatments). The output variables were morphological and quality parameters, with agricultural importance such as plant height, umbel diameter, number of umbels, number of seeds per umbel, 1000-seed weight, seed yield per plant, plant weight, harvest index, yield per ha, essential oil (EO) yield, germination energy, total germination, EO content, as well as the share of EOs compounds, including limonene, cis-dihydro carvone, methyl chavicol, carvone, cis-anethole, trans-anethole, ß-elemene, α-himachalene, trans-ß-farnesene, γ-himachalene, trans-muurola-4(14),5-diene, α-zingiberene, ß-himachalene, ß-bisabolene, trans-pseudoisoeugenyl 2-methylbutyrate and epoxy-pseudoisoeugenyl 2-methylbutyrate. The ANN model predicted agricultural parameters accurately, showing r2 values between 0.555 and 0.918, while r2 values for the forecasting of essential oil content were between 0.379 and 0.908. According to global sensitivity analysis, the fertilization type was a more influential variable to agricultural parameters, while the location site was more influential to essential oils content.

15.
Antibiotics (Basel) ; 11(9)2022 Sep 11.
Article in English | MEDLINE | ID: mdl-36140014

ABSTRACT

Winter savory (Satureja montana L.) is a well-known spice and medicinal plant with a wide range of activities and applications. Two subspecies of S. montana, subsp. montana and subsp. variegata, were used for the preparation of seven different extracts: steam distillation (essential oil (EO) and hydrolate (HY)), subcritical water (SWE), ultrasound-assisted (UAE-MeOH and UAE-H2O), and microwave-assisted (MAE-MeOH and MAE-H2O) extraction. The obtained EOs, HYs, and extracts were used for an in vitro evaluation of the antioxidant activity (DPPH, ABTS, reducing power, and superoxide anion methods) and in vitro antimicrobial activity against Bacillus cereus, Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, Salmonella Typhimurium, Saccharomyces cerevisiae, and Candida albicans. The antimicrobial screening was conducted using disk-diffusion assessment, minimal inhibitory concentration, time-kill kinetics modeling, and pharmacodynamic study of the biocide effect. The total phenolic content (TPC) was highest in EO, followed by SWE, MAE, and UAE, and the lowest was in HY. The highest antimicrobial activity shows EO and SWE for both varieties, while different UAE and MAE extracts have not exhibited antimicrobial activity. The natural antimicrobials in the S. montana extract samples obtained by green extraction methods, indicated the possibility of ecologically and economically better solutions for future in vivo application of the selected plant subspecies.

16.
Microorganisms ; 10(7)2022 Jul 11.
Article in English | MEDLINE | ID: mdl-35889117

ABSTRACT

The civil research community has been attracted to self-healing bacterial-based concrete as a potential solution in the economy 4.0 era. This concept provides more sustainable material with a longer lifetime due to the reduction of crack appearance and the need for anthropogenic impact. Regardless of the achievements in this field, the gap in the understanding of the importance of the bacterial role in self-healing concrete remains. Therefore, understanding the bacterial life cycle in the self-healing effect of cement-based materials and selecting the most important relationship between bacterial contribution, self-healing effect, and material characteristics through the process of microbiologically (bacterially) induced carbonate precipitation is just the initial phase for potential applications in real environmental conditions. The concept of this study offers the possibility to recognize the importance of the bacterial life cycle in terms of application in extreme conditions of cement-based materials and maintaining bacterial roles during the self-healing effect.

17.
Antioxidants (Basel) ; 11(5)2022 Apr 23.
Article in English | MEDLINE | ID: mdl-35624689

ABSTRACT

Artificial neural intelligence was established for the estimation, prediction, and optimization of many agricultural and food processes to enable enhanced and balanced utilization of fresh and processed fruits. The predictive capabilities of artificial neural networks (ANNs) are evaluated to estimate the phytochemical composition and the antioxidant and antimicrobial activity of horned melon (Cucumis metuliferus) pulp, peel, and seed. Using multiobjective optimization, the main goals were successively achieved through analysis of antimicrobial potential against sensitive microorganisms for peel (Bacillus cereus, Pseudomonas aeruginosa, Aspergillus brasiliensis, and Penicillium aurantiogriseum), pulp (Salmonella enterica subsp. enterica serotype Typhimurium), and seed samples (Saccharomyces cerevisiae and Candida albicans), and its connection with phytochemical and nutritional composition and antioxidant activity. The highly potent extracts were obtained from peels which represent a waste part with strong antioxidant and antifungal capacity. Briefly, the calculated inhibition zone minimums for sensitive microorganisms were 25.3−30.7 mm, while the optimal results achieved with carotenoids, phenolics, vitamin C, proteins, lipids, DPPH, ABTS, and RP were: 332.01 mg ß-car/100 g, 1923.52 mg GAE/100 g, 928.15 mg/100 g, 5.73 g/100 g, 2.3 g/100 g, 226.56 µmol TE/100 g, 8042.55 µmol TE/100 g, and 7526.36 µmol TE/100 g, respectively. These results imply the possibility of using horned melon peel extract as an antioxidant and antifungal agent for food safety and quality.

18.
Foods ; 11(8)2022 Apr 14.
Article in English | MEDLINE | ID: mdl-35454716

ABSTRACT

Consumer knowledge about pasta quality differs around the world. Modern consumers are more sophisticated compared to past times, due to the availability of information on pasta types and quality. Therefore, this study investigated the nutritional, physical, textural, and morphological quality of durum wheat pasta enriched with carrot waste encapsulates (10 and 20% freeze-dried encapsulate (FDE) and 10 and 20% spray-dried encapsulate (SDE)), as well as determining consumer preferences for this type of product. Replacement of semolina with FDE and SDE contributed to changes in the pasta nutritional quality, which was reflected in the increased protein, fat, and ash content. Additionally, changes in cooking quality, color, and texture were within satisfactory limits. The uncooked pasta enriched with 10 and 20% SDE was characterized by a lighter yellow intensity with color saturation, as well as an imperceptible waxy appearance compared to the control and enriched pasta with 10 and 20% FDE. After cooking, the yellow color was more intense in all the enriched pasta samples which can be linked to the raw cereal which was significantly greater in the control in comparison to the FDE and SDE containing samples. Overall, carrot waste can be a promising material for the food industry to produce high-quality pasta.

19.
Plants (Basel) ; 11(7)2022 Mar 31.
Article in English | MEDLINE | ID: mdl-35406925

ABSTRACT

Steam distillation was used for the isolation of Dracocephalum moldavica L. (Moldavian dragonhead) essential oil (DMEO). This aromatic herbaceous plant is widespread across the Northern Hemisphere regions and has been utilized in health-improving studies and applications. In addition to the DMEO, the hydrolate (DMH), a byproduct of the distillation process, was also collected. The DMEO and DMH were analyzed and compared in terms of their chemical composition, as well as their in vitro biological activities. The main component in DMEO was geranyl acetate, while geranial was dominant in DMH. The DMEO demonstrated better antioxidant and antimicrobial activities compared with the DMH against Staphylococcus aureus, Escherichia coli, Salmonella Typhimurium, and Listeria monocytogenes, which represent sources of food-borne illness at the global level. The DMEO and DMH show promise as antioxidant and antimicrobial additives to various products.

20.
J Biotechnol ; 350: 31-41, 2022 May 20.
Article in English | MEDLINE | ID: mdl-35427694

ABSTRACT

The microbiologically induced calcite precipitation (MICP) can be an emerging approach that could tap onto soil bacterial diversity and use as a bioremediation technique. Based on the concept that bacteria with biomineralization capacity could be effective CaCO3 inductance agents, this study aimed to evaluate the simultaneous influence of 11 operational and environmental factors on the MICP process, for the first time. Therefore, Bacillus muralis, B. lentus, B. simplex, B. firmus, and B. licheniformis, isolated from alkaline soils, were used in the selection of the best performing bacterium compared with a well-known MICP bioagent Sporosarcina pasteurii DSM 33. Plackett-Burman's experimental design was labouring to screen all independent variables for their significances on five outputs (pH value, number of viable cells and spores, amount of urea and CaCO3 precipitate). According to experimentally obtained data, an artificial neural network model based on the Broyden-Fletcher-Goldfarb-Shanno algorithm showed good prediction capabilities, while differences in the relative influences were observed at the bacterial strain level. B. licheniformis turn out to be the most potent bioagent, with a maximum amount of CaCO3 precipitate of 3.14 g/100 mL in the optimal conditions.


Subject(s)
Bacillus , Sporosarcina , Bacteria , Biomineralization , Calcium Carbonate , Chemical Precipitation , Soil
SELECTION OF CITATIONS
SEARCH DETAIL
...