Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 4(9): 2958-61, 2012 Apr 28.
Article in English | MEDLINE | ID: mdl-22441701

ABSTRACT

We present a facile approach for the fabrication of a nanocomposite comprising α-Fe(2)O(3) nanotubes (NTs) anchored on reduced graphene oxide (rGO) for electrochemical capacitors (ECs). The hollow tubular structure of the α-Fe(2)O(3) NTs presents a high surface area for reaction, while the incorporation of rGO provides an efficient two-dimensional conductive pathway to allow fast, reversible redox reaction. As a result, the nanocomposite materials exhibit a specific capacitance which is remarkably higher (~7 times) than α-Fe(2)O(3) NTs alone. In addition, the nanocomposites show excellent cycling life and large negative potential window. These findings suggest that such nanocomposites are a promising candidate as negative electrodes in asymmetrical capacitors with neutral electrolytes.

2.
J Nanosci Nanotechnol ; 10(10): 6575-9, 2010 Oct.
Article in English | MEDLINE | ID: mdl-21137764

ABSTRACT

This article quantifies the effect of the operating pressure of the H2 + C2H4 gas mixture on the current density and threshold voltage of the electron emission from dense forests of multiwalled carbon nanotubes synthesized using thermal catalytic Chemical Vapor Deposition under near atmospheric pressure process conditions. The results suggest that in the pressure range of interest 400-700 Torr the field emission properties can be substantially improved by operating the process at lower gas pressures when the nanostructure aspect ratios are higher. The obtained threshold voltage approximately 1.75 V/microm and the emission current densities approximately 10 mA/cm2 offer competitive advantages compared with the results reported by other authors.

3.
Langmuir ; 26(2): 1165-71, 2010 Jan 19.
Article in English | MEDLINE | ID: mdl-19711920

ABSTRACT

Molecular dynamics simulations of ZnO nanowires under tensile loading were performed and compared with simulations of TiO(2) wires to present size-dependent mechanical properties and super ductility of metal oxide wires. It is shown that while large surface-to-volume ratio is responsible for their size effects, ZnO and TiO(2) wires displayed opposite trends. Although the stiffness of both wires converged monotonically to their bulk stiffness values as diameter increases, bulk stiffness represented the upper bound for ZnO nanowires as opposed to the lower bound for TiO(2) wires. ZnO nanowires relaxed to either completely amorphous or completely crystalline states depending on wire thickness, whereas a thin amorphous shell is always present in TiO(2) nanowires. It was also found that when crystalline ZnO nanowires are stretched, necking initiated at localized amorphous regions to eventually form single-atom chains which can sustain strains above 100%. Such large elongations are not observed in TiO(2) nanowires. Using the analogy of a clothesline, an explanation is offered for the necessary conditions leading to super ductility.


Subject(s)
Molecular Dynamics Simulation , Nanowires/chemistry , Zinc Oxide/chemistry , Models, Theoretical , Nanotechnology , Tensile Strength , Titanium/chemistry
4.
Nanotechnology ; 20(17): 175705, 2009 Apr 29.
Article in English | MEDLINE | ID: mdl-19420600

ABSTRACT

An effective surface-enhanced Raman scattering (SERS) template based on a 3D hybrid Ag nanocluster (NC)-decorated ZnO nanowire array was fabricated through a simple process of depositing Ag NCs on ZnO nanowire arrays. The effects of particle size and excitation energy on the Raman scattering in these hybrid systems have been investigated using rhodamine 6G as a standard analyte. The results indicate that the hybrid nanosystem with 150 nm Ag NCs produces a larger SERS enhancement factor of 3.2 x 10(8), which is much higher than that of 10 nm Ag NCs (6.0 x 10(6)) under 532 nm excitation energy. The hybrid nanowire arrays were further applied to obtain SERS spectra of the two-photon absorption (TPA) chromophore T7. Finite-difference time-domain simulations reveal the presence of an enhanced field associated with inter-wire plasmon coupling of the 150 nm Ag NCs on adjacent ZnO nanowires; such a field was absent in the case of the 10 nm Ag NC-coated ZnO nanowire. Such hybrid nanosystems could be used as SERS substrates more effectively than assembled Ag NC film due to the enhanced light-scattering local field and the inter-wire plasmon-enhanced electromagnetic field.

5.
J Nanosci Nanotechnol ; 9(5): 2795-812, 2009 May.
Article in English | MEDLINE | ID: mdl-19452934

ABSTRACT

Inorganic nanowires, such as those of metals, semiconductors and oxides, have attracted much research interest due to their unique material properties and present many possibilities for the development of revolutionary applications in materials science and technology. There are abundant reports on experimental works covering various aspects of nanowires including fabrication, structural analysis and property characterization. Theoretical studies have also been carried out to provide researchers with a better understanding of nanowire structural characteristics and the mechanisms that affect their properties. This report gives a brief introduction to the numerical methodologies commonly used for the analysis of nanowires followed by a review of theoretical works focusing on the unique structures of nanowires, their stability and related mechanical properties. The current state of research and development of nanowires is presented together with some comments on the future direction of theoretical studies on inorganic nanowires.

6.
Nano Lett ; 9(2): 576-82, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19159252

ABSTRACT

The mechanisms governing the tensile behavior of TiO(2) nanowires were studied by molecular dynamics simulations. Nanowires below a threshold diameter of about 10 A transformed into a completely disordered structure after thermodynamic equilibration, whereas thicker nanowires retained their crystalline core. Initial elastic tensile deformation was effected by the reconfiguration of surface atoms while larger elongations resulted in continuous cycles of Ti-O bond straightening, bond breakage, inner atomic distortion, and necking until rupture. Nanowires have much better mechanical properties than bulk TiO(2). Nanowires below the threshold diameter exhibit extraordinarily high stiffness and toughness and are more sensitive to strain rate.


Subject(s)
Nanowires/chemistry , Titanium/chemistry , Models, Molecular , Molecular Conformation , Stress, Mechanical , Surface Properties , Tensile Strength
7.
J Nanosci Nanotechnol ; 6(4): 990-5, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16736755

ABSTRACT

We report a new morphology of "cactus" top-decorated aligned carbon nanotubes grown by the PECVD method using pure C2H2 gas. Unlike most previous reports, no additional carrier gas is used for pretreatment. Carbon nanotubes can still grow and maintain the tubular structure underneath the "cactus" tops. It is proposed that the H atoms produced by the dissociation of C2H2 activate the catalyst nanoparticles. Scanning electron microscopy (SEM) shows that the top "cactus" morphology is composed of a large quantity of small nanosheets. Transmission electron microscopy (TEM) reveals the amorphous carbon nature of these "cactus" structures. The formation of these "cactus" structures is possibly due to covalent absorption and reconstruction of carbon atoms on the broken graphite layers of nanotubes produced by the strong ion bombardment under plasma. The third-order optical nonlinearities and nonlinear dynamics are also investigated. The third-order nonlinear susceptibility magnitude /chi(3)/ is found to be 2.2 x 10(-11) esu, and the relaxation process takes place in about 1.8 ps.


Subject(s)
Crystallization/methods , Nanotechnology/methods , Nanotubes, Carbon/chemistry , Nanotubes, Carbon/ultrastructure , Optics and Photonics , Cactaceae/anatomy & histology , Molecular Conformation , Nanotechnology/instrumentation , Nanotubes, Carbon/radiation effects , Nonlinear Dynamics , Particle Size
8.
J Phys Chem B ; 109(22): 11100-9, 2005 Jun 09.
Article in English | MEDLINE | ID: mdl-16852354

ABSTRACT

Two-dimensional ordered arrays of gold (Au) nanoparticles were fabricated using two different variants of the nanosphere lithography technique. First, ordered arrays of polystyrene nanospheres on Si substrate were used as deposition masks through which gold films were deposited by electron beam evaporation. After the removal of the nanospheres, an array of triangular Au nanodisks was left on the Si substrate. After thermal annealing at increasing temperature, systematic shape transition of the nanostructures from original triangular Au nanodisks to rounded nanoparticles was observed. This approach allows us to systematically vary the size and morphology of the particles. In the second and novel technique, we made use of reactive ion etching to simultaneously reduce the dimension of the masking nanospheres and create arrays of nanopores on the substrate prior to the deposition of the Au films. These samples were subsequently annealed, which resulted in size-tunable and ordered Au nanoparticle arrays with the nanoparticles nested in the nanopores of the templated substrate. With the nanoparticles anchored in the nanopores, the substrate could be useful as a template for growth of other nanomaterials.

9.
Adv Mater ; 17(11): 1386-1390, 2005 Jun 06.
Article in English | MEDLINE | ID: mdl-34412439

ABSTRACT

Formation of conical polymer structures by atomic force microscopy (AFM) nanolithography and the electrical-conduction mechanism involved in the AFM- probe-induced patterning process are reported. The current is dominated by water-bridge-assisted ionic conduction. Polymer phase transition and mass redistribution occur without modification or degradation of the poly(methyl methacrylate) (PMMA) material.

SELECTION OF CITATIONS
SEARCH DETAIL
...