Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 10(2): e0118534, 2015.
Article in English | MEDLINE | ID: mdl-25714366

ABSTRACT

Regulatory T (Treg) cells are critical determinants of both immune responses and metabolic control. Here we show that systemic ablation of Treg cells compromised the adaptation of whole-body energy expenditure to cold exposure, correlating with impairment in thermogenic marker gene expression and massive invasion of pro-inflammatory macrophages in brown adipose tissue (BAT). Indeed, BAT harbored a unique sub-set of Treg cells characterized by a unique gene signature. As these Treg cells respond to BAT activation upon cold exposure, this study defines a BAT-specific Treg sub-set with direct implications for the regulation of energy homeostasis in response to environmental stress.


Subject(s)
Adipose Tissue, Brown/immunology , T-Lymphocyte Subsets/immunology , T-Lymphocytes, Regulatory/immunology , Adipose Tissue, Brown/metabolism , Adipose Tissue, Brown/pathology , Animals , Female , Gene Expression Profiling , Gene Expression Regulation , Inflammation/genetics , Inflammation/immunology , Inflammation/metabolism , Metabolic Networks and Pathways , Metabolome , Metabolomics/methods , Mice , Phenotype , Spleen/cytology , Spleen/immunology , Spleen/metabolism , T-Lymphocyte Subsets/metabolism , T-Lymphocytes, Regulatory/metabolism
2.
Front Cell Neurosci ; 7: 207, 2013.
Article in English | MEDLINE | ID: mdl-24273493

ABSTRACT

Decreased rRNA synthesis and nucleolar disruption, known as nucleolar stress, are primary signs of cellular stress associated with aging and neurodegenerative disorders. Silencing of rDNA occurs during early stages of Alzheimer's disease (AD) and may play a role in dementia. Moreover, aberrant regulation of the protein synthesis machinery is present in the brain of suicide victims and implicates the epigenetic modulation of rRNA. Recently, we developed unique mouse models characterized by nucleolar stress in neurons. We inhibited RNA polymerase I by genetic ablation of the basal transcription factor TIF-IA in adult hippocampal neurons. Nucleolar stress resulted in progressive neurodegeneration, although with a differential vulnerability within the CA1, CA3, and dentate gyrus (DG). Here, we investigate the consequences of nucleolar stress on learning and memory. The mutant mice show normal performance in the Morris water maze and in other behavioral tests, suggesting the activation of adaptive mechanisms. In fact, we observe a significantly enhanced learning and re-learning corresponding to the initial inhibition of rRNA transcription. This phenomenon is accompanied by aberrant synaptic plasticity. By the analysis of nucleolar function and integrity, we find that the synthesis of rRNA is later restored. Gene expression profiling shows that 36 transcripts are differentially expressed in comparison to the control group in absence of neurodegeneration. Additionally, we observe a significant enrichment of the putative serum response factor (SRF) binding sites in the promoters of the genes with changed expression, indicating potential adaptive mechanisms mediated by the mitogen-activated protein kinase pathway. In the DG a neurogenetic response might compensate the initial molecular deficits. These results underscore the role of nucleolar stress in neuronal homeostasis and open a new ground for therapeutic strategies aiming at preserving neuronal function.

SELECTION OF CITATIONS
SEARCH DETAIL
...