Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-36399889

ABSTRACT

Bimatoprost is a synthetic prostamide F2α analog that down-regulates adipogenesis in vitro. This effect has been attributed to participation in a negative feedback loop that regulates anandamide-induced adipogenesis. A follow-on investigation has now been conducted into the broader metabolic effects of bimatoprost using rats under both normal state and obesity-inducing conditions. Chronic bimatoprost administration attenuated weight gain in a dose dependent-manner in rats fed either standard [max effect -7%] or obesity-promoting diets [max effect -23%] over a 9-10 week period. Consistent with these findings, bimatoprost promoted satiety as measured by decreased food intake [max effect, -7%], gastric emptying [max effect, -33-50%] and decreased circulating concentrations of the gut hormones, ghrelin and GLP-1 [max effect, -33-50%]. Additionally, subcutaneous, and visceral fat mass were distinctly affected by treatment [-30% diet independent]. Taken together, these results suggest that bimatoprost regulates energy homeostasis through promoting satiety and a decrease in food intake. These newly reported activities of bimatoprost reveal an additional method of metabolic disease intervention for potential therapeutic exploitation.


Subject(s)
Obesity , Weight Gain , Rats , Animals , Bimatoprost , Obesity/drug therapy , Diet , Adipogenesis
2.
ACS Pharmacol Transl Sci ; 3(6): 1199-1210, 2020 Dec 11.
Article in English | MEDLINE | ID: mdl-33344897

ABSTRACT

It has previously been reported that a prototypical compound (AGN 211377), which blocks pro-inflammatory prostanoid receptors (DP1, DP2, EP1, EP4, FP, TP) and leaves open IP and EP2 receptors so that their anti-inflammatory properties could be exerted, produced superior inhibitory effects on cytokine release from human macrophages compared to cyclooxygenase (COX) inhibitors. This favorable activity profile translated into animal studies, with AGN 211377 exceeding the level of inhibition afforded by COX inhibition. AGN 211377 was not, however, a practical drug candidate, having poor bioavailability and cost of goods concerns. Compound 1 (designated AGN 225660) represents a second-generation compound with an entirely different "druggable" core structure. Such a dramatic change in chemical scaffold created uncertainty with respect to matching the effects of AGN 211377. AGN 225660 inhibited RANTES, IL-8, and MCP-1 secretion by at least 50%, from TNFα activated human macrophages. Although AGN 225660 reduced TNFα-evoked MCP-1 release from human monocyte-derived macrophages, it increased LPS-induced MCP-1 secretion (up to 2-fold) from human monocyte-derived dendritic cells. However, AGN 225660 inhibited the release of IL12p 70 and IL-23 from human monocyte-derived dendritic cells stimulated by LPS by more than 70%. This effect of AGN 225660 was reproduced in part by the prototype compound AGN 211377 and a combination of selective DP1, EP1, EP4, FP, and TP antagonists. These findings suggest important effects on T cell skewing and disease modification by this class of therapeutic agents. AGN 225660 exhibited good ocular bioavailability and was active in reducing ocular inflammation associated with phacoemulsification surgery, LPS, and arachidonic acid induced uveitis.

3.
J Ocul Pharmacol Ther ; 36(8): 636-648, 2020 10.
Article in English | MEDLINE | ID: mdl-32640926

ABSTRACT

Purpose: JV-GL1 is an efficacious, potent, and long-acting antiglaucoma agent, according to studies in ocular normotensive and hypertensive monkeys. As an obligatory step in the drug development process, studies with exaggerated doses and an accelerated dosing schedule for JV-GL1 were performed in a second species (dog). Methods: Intraocular pressure (IOP) was measured by pneumatonometry in conscious Beagle dogs, which remained conscious throughout the study and gently restrained by hand. Pupil diameter was measured with an Optistick. Ocular surface hyperemia was visually assessed and scored according to a 1-3 assessment scale. Results: JV-GL1, as a 0.01% eye drop, produced significantly greater reductions in IOP than the original clinical dose of bimatoprost (0.03%). JV-GL1 and its free acid enzymatic hydrolysis product PGN 9856, over a 0.01%-0.1% dose range, reduced IOP to ≤10 mm Hg. JV-GL1 and PGN 9856 produced no miosis but a similar degree of ocular surface hyperemia to bimatoprost. Although PGN 9862, a close congener of PGN 9856, was very active as the free acid, esterification essentially abolished its ocular hypotensive activity and ocular surface redness. Conclusion: JV-GL1 was confirmed as a highly effective and potent ocular hypotensive, exceeding the activity of bimatoprost. A similar degree of ocular surface redness was apparent for both compounds, given as eye drops, but no other effects occurred. Results with PGN 9862 and its isopropyl ester confirmed that PGN 9862-isopropyl ester is not bioavailable in the eye and not susceptible to enzymatic hydrolysis in ocular tissues, a first for C1 ester prodrugs in the eye.


Subject(s)
Acetates/pharmacology , Antihypertensive Agents/pharmacology , Biphenyl Compounds/pharmacology , Eye/drug effects , Glaucoma/drug therapy , Acetates/administration & dosage , Acetates/adverse effects , Acetates/chemistry , Administration, Topical , Animals , Antihypertensive Agents/administration & dosage , Antihypertensive Agents/adverse effects , Antihypertensive Agents/chemistry , Bimatoprost/pharmacology , Biological Availability , Biphenyl Compounds/administration & dosage , Biphenyl Compounds/adverse effects , Biphenyl Compounds/chemistry , Dogs , Drug Development/methods , Eye/metabolism , Eye/physiopathology , Female , Hydrolysis , Hyperemia/chemically induced , Intraocular Pressure/drug effects , Male , Models, Animal , Ophthalmic Solutions/administration & dosage , Safety
4.
Exp Eye Res ; 80(1): 135-45, 2005 Jan.
Article in English | MEDLINE | ID: mdl-15652534

ABSTRACT

Bimatoprost is a synthetic analog of prostaglandin F(2 alpha) ethanolamide (prostamide F(2 alpha)), and shares a pharmacological profile consistent with that of the prostamides. Like prostaglandin F(2 alpha) carboxylic acid, bimatoprost potently lowers intraocular pressure in dogs, primates and humans. In order to distinguish its mechanism of action from prostaglandin F(2 alpha), fluorescence confocal microscopy was used to examine the effects of bimatoprost, prostaglandin F(2 alpha) and 17-phenyl prostaglandin F(2 alpha) on calcium signaling in resident cells of digested cat iris sphincter, a tissue which exhibits contractile responses to both agonists. Constant superfusion conditions obviated effective conversion of bimatoprost. Serial challenge with 100 nM bimatoprost and prostaglandin F(2 alpha) consistently evoked responses in different cells within the same tissue preparation, whereas prostaglandin F(2 alpha) and 17-phenyl prostaglandin F(2 alpha) elicited signaling responses in the same cells. Bimatoprost-sensitive cells were consistently re-stimulated with bimatoprost only, and prostaglandin F(2 alpha) sensitive cells could only be re-stimulated with prostaglandin F(2 alpha). The selective stimulation of different cells in the same cat iris sphincter preparation by bimatoprost and prostaglandin F(2 alpha), along with the complete absence of observed instances in which the same cells respond to both agonists, strongly suggests the involvement of distinct receptors for prostaglandin F(2 alpha) and bimatoprost. Further, prostaglandin F(2 alpha) but not bimatoprost potently stimulated calcium signaling in isolated human embryonic kidney cells stably transfected with the feline- and human-prostaglandin F(2 alpha) FP-receptor and in human dermal fibroblast cells, and only prostaglandin F(2 alpha) competed with radioligand binding in HEK-feFP cells. These studies provide further evidence for the existence of a bimatoprost-sensitive receptor that is distinct from any of the known prostaglandin receptor types.


Subject(s)
Calcium Signaling/drug effects , Dinoprost/analogs & derivatives , Dinoprost/pharmacology , Iris/drug effects , Lipids/pharmacology , Amides , Animals , Bimatoprost , Calcium/metabolism , Carbachol/pharmacology , Cats , Cells, Cultured , Cholinergic Agonists/pharmacology , Cloprostenol/analogs & derivatives , Humans , Intraocular Pressure/drug effects , Iris/metabolism , Microscopy, Confocal/methods , Muscle Contraction/drug effects
5.
Exp Eye Res ; 75(2): 155-63, 2002 Aug.
Article in English | MEDLINE | ID: mdl-12137761

ABSTRACT

Prostanoid analogs have recently been introduced into clinical use for the management of increased intraocular pressure (IOP). This class of compounds is known to exert effects on vascular components and some endogenous parent prostaglandins have been shown to alter regional ocular blood flow and exhibit significant vasoactive properties in isolated ocular blood vessels, so the possibility exists that prostanoids could affect the ocular microcirculation either by absorption into the systemic circulation or by direct localized activity on the retinal microvasculature. Thus, the aim of this study was to examine systematically the effects of a broad variety of agonists that exhibit preferential activity at EP(1)-, EP(2)-, EP(3)-, FP-, DP-, IP-, and TP-prostanoid receptor sites on microvessel caliber in the microvasculature associated with human retinal tissues grafted into the hamster cheek pouch membrane. The selective DP-receptor agonist, BW245C and the selective TP-receptor agonist, U-46619, were the only compounds tested that exhibited significant vasoactive effects relative to baseline resting diameters in retinal microvessels. A dose-dependent increase in arteriolar caliber was elicited by BW245C over a concentration range of 10(-8)-10(-4)M at the tested 5- and 10-min timepoints. U-46619 evoked a sharp decrease in microvessel diameter within a 10(-7)-10(-4)M gamut, with the dose-response profiles at 5- and 10-min timepoints remaining essentially parallel over the tested range of concentrations. In contrast to the vasoconstriction induced by U-46619, retinal microvessel calibers were not markedly affected by AGN 192093, a thromboxane-like agonist with additional unique properties. No significant changes in human retinal arteriolar diameters relative to baseline were observed in response to a broad panel of parent and derived compounds known to be selective for EP-, FP- and IP-prostanoid receptors.


Subject(s)
Prostaglandins/pharmacology , Receptors, Prostaglandin/metabolism , Retinal Vessels/drug effects , 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/pharmacology , Animals , Cricetinae , Dose-Response Relationship, Drug , Humans , Hydantoins/pharmacology , Microcirculation/anatomy & histology , Microcirculation/drug effects , Prostaglandins F, Synthetic/pharmacology , Retinal Vessels/anatomy & histology , Retinal Vessels/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...