Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 11(1): 139, 2020 01 16.
Article in English | MEDLINE | ID: mdl-31949146

ABSTRACT

Mismatch repair deficient (dMMR) gastro-oesophageal adenocarcinomas (GOAs) show better outcomes than their MMR-proficient counterparts and high immunotherapy sensitivity. The hypermutator-phenotype of dMMR tumours theoretically enables high evolvability but their evolution has not been investigated. Here we apply multi-region exome sequencing (MSeq) to four treatment-naive dMMR GOAs. This reveals extreme intratumour heterogeneity (ITH), exceeding ITH in other cancer types >20-fold, but also long phylogenetic trunks which may explain the exquisite immunotherapy sensitivity of dMMR tumours. Subclonal driver mutations are common and parallel evolution occurs in RAS, PIK3CA, SWI/SNF-complex genes and in immune evasion regulators. MSeq data and evolution analysis of single region-data from 64 MSI GOAs show that chromosome 8 gains are early genetic events and that the hypermutator-phenotype remains active during progression. MSeq may be necessary for biomarker development in these heterogeneous cancers. Comparison with other MSeq-analysed tumour types reveals mutation rates and their timing to determine phylogenetic tree morphologies.


Subject(s)
DNA Mismatch Repair , Esophageal Neoplasms/genetics , Genetic Heterogeneity , Stomach Neoplasms/genetics , Adenocarcinoma/genetics , DNA-Binding Proteins/genetics , Exome , Genes, Neoplasm/genetics , Humans , Immune Evasion , Immunotherapy , Mismatch Repair Endonuclease PMS2/genetics , MutL Protein Homolog 1/genetics , MutS Homolog 2 Protein/genetics , Mutation , Phenotype , Phylogeny
3.
J Immunother Cancer ; 7(1): 309, 2019 11 18.
Article in English | MEDLINE | ID: mdl-31735170

ABSTRACT

BACKGROUND: Patient derived organoids (PDOs) can be established from colorectal cancers (CRCs) as in vitro models to interrogate cancer biology and its clinical relevance. We applied mass spectrometry (MS) immunopeptidomics to investigate neoantigen presentation and whether this can be augmented through interferon gamma (IFNγ) or MEK-inhibitor treatment. METHODS: Four microsatellite stable PDOs from chemotherapy refractory and one from a treatment naïve CRC were expanded to replicates with 100 million cells each, and HLA class I and class II peptide ligands were analyzed by MS. RESULTS: We identified an average of 9936 unique peptides per PDO which compares favorably against published immunopeptidomics studies, suggesting high sensitivity. Loss of heterozygosity of the HLA locus was associated with low peptide diversity in one PDO. Peptides from genes without detectable expression by RNA-sequencing were rarely identified by MS. Only 3 out of 612 non-silent mutations encoded for neoantigens that were detected by MS. In contrast, computational HLA binding prediction estimated that 304 mutations could generate neoantigens. One hundred ninety-six of these were located in expressed genes, still exceeding the number of MS-detected neoantigens 65-fold. Treatment of four PDOs with IFNγ upregulated HLA class I expression and qualitatively changed the immunopeptidome, with increased presentation of IFNγ-inducible genes. HLA class II presented peptides increased dramatically with IFNγ treatment. MEK-inhibitor treatment showed no consistent effect on HLA class I or II expression or the peptidome. Importantly, no additional HLA class I or II presented neoantigens became detectable with any treatment. CONCLUSIONS: Only 3 out of 612 non-silent mutations encoded for neoantigens that were detectable by MS. Although MS has sensitivity limits and biases, and likely underestimated the true neoantigen burden, this established a lower bound of the percentage of non-silent mutations that encode for presented neoantigens, which may be as low as 0.5%. This could be a reason for the poor responses of non-hypermutated CRCs to immune checkpoint inhibitors. MEK-inhibitors recently failed to improve checkpoint-inhibitor efficacy in CRC and the observed lack of HLA upregulation or improved peptide presentation may explain this.


Subject(s)
Antigens, Neoplasm/immunology , Colorectal Neoplasms/immunology , Histocompatibility Antigens Class I/immunology , Organoids/immunology , Peptides/immunology , Antigens, Neoplasm/genetics , Colorectal Neoplasms/genetics , Female , Histocompatibility Antigens Class I/genetics , Humans , Interferon-gamma/pharmacology , MAP Kinase Kinase Kinases/antagonists & inhibitors , Male , Middle Aged , Protein Kinase Inhibitors/pharmacology , Proteomics
4.
Cancer Cell ; 36(1): 35-50.e9, 2019 07 08.
Article in English | MEDLINE | ID: mdl-31287991

ABSTRACT

Despite biomarker stratification, the anti-EGFR antibody cetuximab is only effective against a subgroup of colorectal cancers (CRCs). This genomic and transcriptomic analysis of the cetuximab resistance landscape in 35 RAS wild-type CRCs identified associations of NF1 and non-canonical RAS/RAF aberrations with primary resistance and validated transcriptomic CRC subtypes as non-genetic predictors of benefit. Sixty-four percent of biopsies with acquired resistance harbored no genetic resistance drivers. Most of these had switched from a cetuximab-sensitive transcriptomic subtype at baseline to a fibroblast- and growth factor-rich subtype at progression. Fibroblast-supernatant conferred cetuximab resistance in vitro, confirming a major role for non-genetic resistance through stromal remodeling. Cetuximab treatment increased cytotoxic immune infiltrates and PD-L1 and LAG3 immune checkpoint expression, potentially providing opportunities to treat cetuximab-resistant CRCs with immunotherapy.


Subject(s)
Colorectal Neoplasms/etiology , Drug Resistance, Neoplasm/genetics , Gene Expression Regulation, Neoplastic/drug effects , Immunity , Transcriptome , Antineoplastic Agents, Immunological/pharmacology , Antineoplastic Agents, Immunological/therapeutic use , Biomarkers, Tumor , Biopsy , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/mortality , Colorectal Neoplasms/pathology , Computational Biology/methods , DNA Mutational Analysis , ErbB Receptors/antagonists & inhibitors , Gene Expression Profiling , Humans , Kaplan-Meier Estimate , Molecular Targeted Therapy , Mutation , Prognosis , Treatment Outcome
5.
J Immunother Cancer ; 7(1): 101, 2019 04 15.
Article in English | MEDLINE | ID: mdl-30982469

ABSTRACT

BACKGROUND: The T cell bispecific antibody cibisatamab (CEA-TCB) binds Carcino-Embryonic Antigen (CEA) on cancer cells and CD3 on T cells, which triggers T cell killing of cancer cell lines expressing moderate to high levels of CEA at the cell surface. Patient derived colorectal cancer organoids (PDOs) may more accurately represent patient tumors than established cell lines which potentially enables more detailed insights into mechanisms of cibisatamab resistance and sensitivity. METHODS: We established PDOs from multidrug-resistant metastatic CRCs. CEA expression of PDOs was determined by FACS and sensitivity to cibisatamab immunotherapy was assessed by co-culture of PDOs and allogeneic CD8 T cells. RESULTS: PDOs could be categorized into 3 groups based on CEA cell-surface expression: CEAhi (n = 3), CEAlo (n = 1) and CEAmixed PDOs (n = 4), that stably maintained populations of CEAhi and CEAlo cells, which has not previously been described in CRC cell lines. CEAhi PDOs were sensitive whereas CEAlo PDOs showed resistance to cibisatamab. PDOs with mixed expression showed low sensitivity to cibisatamab, suggesting that CEAlo cells maintain cancer cell growth. Culture of FACS-sorted CEAhi and CEAlo cells from PDOs with mixed CEA expression demonstrated high plasticity of CEA expression, contributing to resistance acquisition through CEA antigen loss. RNA-sequencing revealed increased WNT/ß-catenin pathway activity in CEAlo cells. Cell surface CEA expression was up-regulated by inhibitors of the WNT/ß-catenin pathway. CONCLUSIONS: Based on these preclinical findings, heterogeneity and plasticity of CEA expression appear to confer low cibisatamab sensitivity in PDOs, supporting further clinical evaluation of their predictive effect in CRC. Pharmacological inhibition of the WNT/ß-catenin pathway may be a rational combination to sensitize CRCs to cibisatamab. Our novel PDO and T cell co-culture immunotherapy models enable pre-clinical discovery of candidate biomarkers and combination therapies that may inform and accelerate the development of immuno-oncology agents in the clinic.


Subject(s)
Antibodies, Bispecific/pharmacology , Antineoplastic Agents, Immunological/pharmacology , Carcinoembryonic Antigen/genetics , Colorectal Neoplasms/drug therapy , Drug Resistance, Neoplasm/genetics , Antibodies, Bispecific/therapeutic use , Antineoplastic Agents, Immunological/therapeutic use , CD8-Positive T-Lymphocytes , Coculture Techniques , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Drug Screening Assays, Antitumor , GPI-Linked Proteins/antagonists & inhibitors , GPI-Linked Proteins/genetics , Gene Expression Regulation, Neoplastic , Genetic Heterogeneity , Humans , Tissue Culture Techniques
6.
Mol Cell Proteomics ; 16(4): 608-621, 2017 04.
Article in English | MEDLINE | ID: mdl-28174229

ABSTRACT

Most breast cancers arise from luminal epithelial cells, and 25-30% of these tumors overexpress the ErbB2/HER2 receptor that correlates with disease progression and poor prognosis. The mechanisms of ErbB2 signaling and the effects of its overexpression are not fully understood. Herein, stable isotope labeling by amino acids in cell culture (SILAC), expression profiling, and phosphopeptide enrichment of a relevant, non-transformed, and immortalized human mammary luminal epithelial cell model were used to profile ErbB2-dependent differences in protein expression and phosphorylation events triggered via EGF receptor (EGF treatment) and ErbB3 (HRG1ß treatment) in the context of ErbB2 overexpression. Bioinformatics analysis was used to infer changes in cellular processes and signaling events. We demonstrate the complexity of the responses to oncogene expression and growth factor signaling, and we identify protein changes relevant to ErbB2-dependent altered cellular phenotype, in particular cell cycle progression and hyper-proliferation, reduced adhesion, and enhanced motility. Moreover, we define a novel mechanism by which ErbB signaling suppresses basal interferon signaling that would promote the survival and proliferation of mammary luminal epithelial cells. Numerous novel sites of growth factor-regulated phosphorylation were identified that were enhanced by ErbB2 overexpression, and we putatively link these to altered cell behavior and also highlight the importance of performing parallel protein expression profiling alongside phosphoproteomic analysis.


Subject(s)
Epithelial Cells/cytology , Gene Expression Profiling/methods , Mammary Glands, Human/metabolism , Phosphoproteins/metabolism , Proteomics/methods , Receptor, ErbB-2/genetics , Cell Adhesion , Cell Culture Techniques , Cell Line , Cell Movement , Cell Proliferation , Computational Biology/methods , Epidermal Growth Factor/pharmacology , Epithelial Cells/metabolism , Female , Gene Amplification , Humans , Isotope Labeling , Ligands , Mammary Glands, Human/cytology , Neuregulin-1/pharmacology , Protein Interaction Maps , Receptor, ErbB-2/metabolism , Signal Transduction , Up-Regulation
7.
Int J Cancer ; 137(8): 1806-17, 2015 Oct 15.
Article in English | MEDLINE | ID: mdl-25204737

ABSTRACT

Epithelial ovarian cancer (EOC) is still considered the most lethal gynecological malignancy and improved early detection of ovarian cancer is crucial to improving patient prognoses. To address this need, we tested whether candidate EOC biomarkers can be identified using three-dimensional (3D) in vitro models. We quantified changes in the abundance of secreted proteins in a 3D genetic model of early-stage EOC, generated by expressing CMYC and KRAS(G) (12) (V) in TERT-immortalized normal ovarian epithelial cells. Cellular proteins were labeled in live cells using stable isotopic amino acid analogues, and secreted proteins identified and quantified using liquid chromatography-tandem mass spectrometry. Thirty-seven and 55 proteins were differentially expressed by CMYC and CMYC+KRAS(G) (12) (V) expressing cells respectively (p < 0.05; >2-fold). We evaluated expression of the top candidate biomarkers in ∼210 primary EOCs: CHI3L1 and FKBP4 are both expressed by >96% of primary EOCs, and FASN and API5 are expressed by 86 and 75% of cases. High expression of CHI3L1 and FKBP4 was associated with worse patient survival (p = 0.042 and p = 0.002, respectively). Expression of LGALS3BP was positively associated with recurrence (p = 0.0001) and suboptimal debulking (p = 0.018) suggesting that these proteins may be novel prognostic biomarkers. Furthermore, within early stage tumours (I/II), high expression of API5, CHI3L1 and FASN was associated with high tumour grade (p = 3 × 10(-4) , p = 0.016, p = 0.010, respectively). We show in vitro cell biology models of early-stage cancer development can be used to identify novel candidate biomarkers for disease, and report the identification of proteins that represent novel potential candidate diagnostic and prognostic biomarkers for this highly lethal disease.


Subject(s)
Biomarkers, Tumor/metabolism , Neoplasms, Glandular and Epithelial/genetics , Neoplasms, Glandular and Epithelial/metabolism , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Proteomics/methods , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins/genetics , ras Proteins/genetics , Adipokines/metabolism , Apoptosis Regulatory Proteins/metabolism , Carcinoma, Ovarian Epithelial , Cell Line, Tumor , Chitinase-3-Like Protein 1 , Fatty Acid Synthase, Type I/metabolism , Female , Gas Chromatography-Mass Spectrometry/methods , Gene Expression Regulation, Neoplastic , Humans , In Vitro Techniques , Lectins/metabolism , Models, Genetic , Neoplasms, Glandular and Epithelial/pathology , Nuclear Proteins/metabolism , Ovarian Neoplasms/pathology , Prognosis , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins p21(ras) , ras Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...