Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bioinformatics ; 33(9): 1426-1428, 2017 05 01.
Article in English | MEDLINE | ID: mdl-28453687

ABSTRACT

Summary: Survival analysis has been applied to The Cancer Genome Atlas (TCGA) data. Although drug exposure records are available in TCGA, existing survival analyses typically did not consider drug exposure, partly due to naming inconsistencies in the data. We have spent extensive effort to standardize the drug exposure data, which enabled us to perform survival analysis on drug-stratified subpopulations of cancer patients. Using this strategy, we integrated gene copy number data, drug exposure data and patient survival data to infer gene-drug interactions that impact survival. The collection of all analyzed gene-drug interactions in 32 cancer types are organized and presented in a searchable web-portal called gene-drug Interaction for survival in cancer (GDISC). GDISC allows biologists and clinicians to interactively explore the gene-drug interactions identified in the context of TCGA, and discover interactions associated to their favorite cancer, drug and/or gene of interest. In addition, GDISC provides the standardized drug exposure data, which is a valuable resource for developing new methods for drug-specific analysis. Availability and Implementation: GDISC is available at https://gdisc.bme.gatech.edu/. Contact: peng.qiu@bme.gatech.edu.


Subject(s)
Antineoplastic Agents/pharmacology , Gene-Environment Interaction , Genes, Neoplasm/drug effects , Neoplasms/genetics , Software , Survival Analysis , Antineoplastic Agents/therapeutic use , Computational Biology/methods , Humans , Neoplasms/drug therapy
2.
BMC Bioinformatics ; 17(1): 409, 2016 Oct 06.
Article in English | MEDLINE | ID: mdl-27716027

ABSTRACT

BACKGROUND: With the advent of large scale biological data collection for various diseases, data analysis pipelines and workflows need to be established to build frameworks for integrative analysis. Here the authors present a pipeline for identifying disease specific gene-drug interactions using CNV (Copy Number Variation) and clinical data from the TCGA (The Cancer Genome Atlas) project. Two cancer types were selected for analysis, LGG (Brain lower grade glioma) and GBM (Glioblastoma multiforme), due to the possible progression from LGG to GBM in some cases. The copy number and clinical data were then used to preform survival analysis on a gene by gene basis on sub-populations of patients exposed to a given drug. RESULTS: Several gene-drug interactions are identified, where the copy number of a gene is associated to survival of a patient exposed to a certain drug. Both Irinotecan/HAS2 (Hyaluronan synthase 2) and Bevacizumab/PGAM1 (Phosphoglycerate mutase 1) are interactions found in this study with independent confirmation. Independent work in colon, breast cancer and leukemia (Györffy, Breast Cancer Res Treat 123:725-731, 2010; Mueller, Mol Cancer Ther 11:3024-3032, 2010; Hitosugi, Cancer Cell 13:585-600, 2012) showed these two interactions can lead to increased survival. CONCLUSION: While the pipeline produced several possible interactions where increased survival is linked to normal or increased copy number of a given gene for patients treated with a given drug, no instance of low copy number or full deletion was linked to increased survival. The development of this pipeline shows a promising utility to identify possible beneficial gene-drug interactions that could improve patient survival and may illustrate some of the problems inherent in this kind of analysis on these data.


Subject(s)
Antineoplastic Agents/pharmacology , DNA Copy Number Variations/genetics , Drug Interactions/genetics , Neoplasms/mortality , Software , Humans , Neoplasms/drug therapy , Neoplasms/genetics , Survival Rate
SELECTION OF CITATIONS
SEARCH DETAIL
...