Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 83
Filter
1.
Brain Commun ; 5(6): fcad330, 2023.
Article in English | MEDLINE | ID: mdl-38107505

ABSTRACT

Differentiating between epilepsy and psychogenic non-epileptic seizures presents a considerable challenge in clinical practice, resulting in frequent misdiagnosis, unnecessary treatment and long diagnostic delays. Quantitative markers extracted from resting-state EEG may reveal subtle neurophysiological differences that are diagnostically relevant. Two observational, retrospective diagnostic accuracy studies were performed to test the clinical validity of univariate resting-state EEG markers for the differential diagnosis of epilepsy and psychogenic non-epileptic seizures. Clinical EEG data were collected for 179 quasi-consecutive patients (age > 18) with a suspected diagnosis of epilepsy or psychogenic non-epileptic seizures who were medication-naïve at the time of EEG; 148 age- and gender-matched patients subsequently received a diagnosis from specialist clinicians and were included in the analyses. Study 1 is a hypothesis-driven study testing the ability of theta power and peak alpha frequency to classify people with epilepsy and people with psychogenic non-epileptic seizures, with an advanced machine learning pipeline. The next study (Study 2) is data-driven; a high number of quantitative EEG features are extracted and a similar machine learning approach as Study 1 assesses whether previously unexplored univariate EEG measures show promise as diagnostic markers. The results of Study 1 suggest that EEG markers that were previously identified as promising diagnostic indicators (i.e. theta power and peak alpha frequency) have limited clinical validity for the classification of epilepsy and psychogenic non-epileptic seizures (mean accuracy: 48%). The results of Study 2 indicate that identifying univariate markers that show good correlation with a categorical diagnostic label is challenging (mean accuracy: 45-60%). This is due to a considerable overlap in neurophysiological features between the diagnostic classes considered in this study, and to the presence of more dominant EEG dynamics such as alterations due to temporal proximity to epileptiform discharges. Markers that were identified in the context of previous epilepsy research using visually normal resting-state EEG were found to have limited clinical validity for the classification task of distinguishing between people with epilepsy and people with psychogenic non-epileptic seizures. A search for alternative diagnostic markers uncovered the challenges involved and generated recommendations for further research.

2.
Sci Adv ; 9(41): eadh3150, 2023 10 13.
Article in English | MEDLINE | ID: mdl-37824621

ABSTRACT

Research on coronavirus disease 2019 vaccination in immune-deficient/disordered people (IDP) has focused on cancer and organ transplantation populations. In a prospective cohort of 195 IDP and 35 healthy volunteers (HV), antispike immunoglobulin G (IgG) was detected in 88% of IDP after dose 2, increasing to 93% by 6 months after dose 3. Despite high seroconversion, median IgG levels for IDP never surpassed one-third that of HV. IgG binding to Omicron BA.1 was lowest among variants. Angiotensin-converting enzyme 2 pseudo-neutralization only modestly correlated with antispike IgG concentration. IgG levels were not significantly altered by receipt of different messenger RNA-based vaccines, immunomodulating treatments, and prior severe acute respiratory syndrome coronavirus 2 infections. While our data show that three doses of coronavirus disease 2019 vaccinations induce antispike IgG in most IDP, additional doses are needed to increase protection. Because of the notably reduced IgG response to Omicron BA.1, the efficacy of additional vaccinations, including bivalent vaccines, should be studied in this population.


Subject(s)
COVID-19 , Immunoglobulin G , Humans , COVID-19 Vaccines , Prospective Studies , COVID-19/prevention & control , Immunity
3.
J Neurosci Methods ; 396: 109933, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37524245

ABSTRACT

BACKGROUND: Deep learning-based (DL) methods are the best-performing methods for white matter tract segmentation in anatomically healthy subjects. However, tract annotations are variable or absent in clinical data and manual annotations are especially difficult in patients with tumors where normal anatomy may be distorted. Direct cortical and subcortical stimulation is the gold standard ground truth to determine the cortical and sub-cortical lo- cation of motor-eloquent areas intra-operatively. Nonetheless, this technique is invasive, prolongs the surgical procedure, and may cause patient fatigue. Navigated Transcranial Magnetic Stimulation (nTMS) has a well-established correlation to direct cortical stimulation for motor mapping and the added advantage of being able to be acquired pre-operatively. NEW METHOD: In this work, we evaluate the feasibility of using nTMS motor responses as a method to assess corticospinal tract (CST) binary masks and estimated uncertainty generated by a DL-based tract segmentation in patients with diffuse gliomas. RESULTS: Our results show CST binary masks have a high overlap coefficient (OC) with nTMS response masks. A strong negative correlation is found between estimated uncertainty and nTMS response mask distance to the CST binary mask. COMPARISON WITH EXISTING METHODS: We compare our approach (UncSeg) with the state-of-the-art TractSeg in terms of OC between the CST binary masks and nTMS response masks. CONCLUSIONS: In this study, we demonstrate that estimated uncertainty from UncSeg is a good measure of the agreement between the CST binary masks and nTMS response masks distance to the CST binary mask boundary.


Subject(s)
Brain Neoplasms , Glioma , Humans , Transcranial Magnetic Stimulation/methods , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/surgery , Brain Neoplasms/pathology , Diffusion Tensor Imaging/methods , Brain Mapping/methods , Glioma/surgery , Neuronavigation/methods
4.
Eur Radiol ; 33(11): 8067-8076, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37328641

ABSTRACT

OBJECTIVES: Surgical planning of vestibular schwannoma surgery would benefit greatly from a robust method of delineating the facial-vestibulocochlear nerve complex with respect to the tumour. This study aimed to optimise a multi-shell readout-segmented diffusion-weighted imaging (rs-DWI) protocol and develop a novel post-processing pipeline to delineate the facial-vestibulocochlear complex within the skull base region, evaluating its accuracy intraoperatively using neuronavigation and tracked electrophysiological recordings. METHODS: In a prospective study of five healthy volunteers and five patients who underwent vestibular schwannoma surgery, rs-DWI was performed and colour tissue maps (CTM) and probabilistic tractography of the cranial nerves were generated. In patients, the average symmetric surface distance (ASSD) and 95% Hausdorff distance (HD-95) were calculated with reference to the neuroradiologist-approved facial nerve segmentation. The accuracy of patient results was assessed intraoperatively using neuronavigation and tracked electrophysiological recordings. RESULTS: Using CTM alone, the facial-vestibulocochlear complex of healthy volunteer subjects was visualised on 9/10 sides. CTM were generated in all 5 patients with vestibular schwannoma enabling the facial nerve to be accurately identified preoperatively. The mean ASSD between the annotators' two segmentations was 1.11 mm (SD 0.40) and the mean HD-95 was 4.62 mm (SD 1.78). The median distance from the nerve segmentation to a positive stimulation point was 1.21 mm (IQR 0.81-3.27 mm) and 2.03 mm (IQR 0.99-3.84 mm) for the two annotators, respectively. CONCLUSIONS: rs-DWI may be used to acquire dMRI data of the cranial nerves within the posterior fossa. CLINICAL RELEVANCE STATEMENT: Readout-segmented diffusion-weighted imaging and colour tissue mapping provide 1-2 mm spatially accurate imaging of the facial-vestibulocochlear nerve complex, enabling accurate preoperative localisation of the facial nerve. This study evaluated the technique in 5 healthy volunteers and 5 patients with vestibular schwannoma. KEY POINTS: • Readout-segmented diffusion-weighted imaging (rs-DWI) with colour tissue mapping (CTM) visualised the facial-vestibulocochlear nerve complex on 9/10 sides in 5 healthy volunteer subjects. • Using rs-DWI and CTM, the facial nerve was visualised in all 5 patients with vestibular schwannoma and within 1.21-2.03 mm of the nerve's true intraoperative location. • Reproducible results were obtained on different scanners.


Subject(s)
Neuroma, Acoustic , Humans , Neuroma, Acoustic/diagnostic imaging , Neuroma, Acoustic/surgery , Neuroma, Acoustic/pathology , Prospective Studies , Diffusion Tensor Imaging/methods , Diffusion Magnetic Resonance Imaging , Facial Nerve/diagnostic imaging , Facial Nerve/pathology , Vestibulocochlear Nerve/pathology
5.
JAMA Netw Open ; 6(5): e2315894, 2023 05 01.
Article in English | MEDLINE | ID: mdl-37256629

ABSTRACT

Importance: Deficiency of adenosine deaminase 2 (DADA2) is a recessively inherited disease characterized by systemic vasculitis, early-onset stroke, bone marrow failure, and/or immunodeficiency affecting both children and adults. DADA2 is among the more common monogenic autoinflammatory diseases, with an estimate of more than 35 000 cases worldwide, but currently, there are no guidelines for diagnostic evaluation or management. Objective: To review the available evidence and develop multidisciplinary consensus statements for the evaluation and management of DADA2. Evidence Review: The DADA2 Consensus Committee developed research questions based on data collected from the International Meetings on DADA2 organized by the DADA2 Foundation in 2016, 2018, and 2020. A comprehensive literature review was performed for articles published prior to 2022. Thirty-two consensus statements were generated using a modified Delphi process, and evidence was graded using the Oxford Center for Evidence-Based Medicine Levels of Evidence. Findings: The DADA2 Consensus Committee, comprising 3 patient representatives and 35 international experts from 18 countries, developed consensus statements for (1) diagnostic testing, (2) screening, (3) clinical and laboratory evaluation, and (4) management of DADA2 based on disease phenotype. Additional consensus statements related to the evaluation and treatment of individuals with DADA2 who are presymptomatic and carriers were generated. Areas with insufficient evidence were identified, and questions for future research were outlined. Conclusions and Relevance: DADA2 is a potentially fatal disease that requires early diagnosis and treatment. By summarizing key evidence and expert opinions, these consensus statements provide a framework to facilitate diagnostic evaluation and management of DADA2.


Subject(s)
Adenosine Deaminase , Intercellular Signaling Peptides and Proteins , Adenosine Deaminase/genetics , Phenotype , Heterozygote
6.
Res Sq ; 2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36993430

ABSTRACT

Monogenic diseases are often studied in isolation due to their rarity. Here we utilize multiomics to assess 22 monogenic immune-mediated conditions with age- and sex-matched healthy controls. Despite clearly detectable disease-specific and "pan-disease" signatures, individuals possess stable personal immune states over time. Temporally stable differences among subjects tend to dominate over differences attributable to disease conditions or medication use. Unsupervised principal variation analysis of personal immune states and machine learning classification distinguishing between healthy controls and patients converge to a metric of immune health (IHM). The IHM discriminates healthy from multiple polygenic autoimmune and inflammatory disease states in independent cohorts, marks healthy aging, and is a pre-vaccination predictor of antibody responses to influenza vaccination in the elderly. We identified easy-to-measure circulating protein biomarker surrogates of the IHM that capture immune health variations beyond age. Our work provides a conceptual framework and biomarkers for defining and measuring human immune health.

7.
Nature ; 614(7949): 752-761, 2023 02.
Article in English | MEDLINE | ID: mdl-36599369

ABSTRACT

Acute viral infections can have durable functional impacts on the immune system long after recovery, but how they affect homeostatic immune states and responses to future perturbations remain poorly understood1-4. Here we use systems immunology approaches, including longitudinal multimodal single-cell analysis (surface proteins, transcriptome and V(D)J sequences) to comparatively assess baseline immune statuses and responses to influenza vaccination in 33 healthy individuals after recovery from mild, non-hospitalized COVID-19 (mean, 151 days after diagnosis) and 40 age- and sex-matched control individuals who had never had COVID-19. At the baseline and independent of time after COVID-19, recoverees had elevated T cell activation signatures and lower expression of innate immune genes including Toll-like receptors in monocytes. Male individuals who had recovered from COVID-19 had coordinately higher innate, influenza-specific plasmablast, and antibody responses after vaccination compared with healthy male individuals and female individuals who had recovered from COVID-19, in part because male recoverees had monocytes with higher IL-15 responses early after vaccination coupled with elevated prevaccination frequencies of 'virtual memory'-like CD8+ T cells poised to produce more IFNγ after IL-15 stimulation. Moreover, the expression of the repressed innate immune genes in monocytes increased by day 1 to day 28 after vaccination in recoverees, therefore moving towards the prevaccination baseline of the healthy control individuals. By contrast, these genes decreased on day 1 and returned to the baseline by day 28 in the control individuals. Our study reveals sex-dimorphic effects of previous mild COVID-19 and suggests that viral infections in humans can establish new immunological set-points that affect future immune responses in an antigen-agnostic manner.


Subject(s)
COVID-19 , Immunity, Innate , Immunologic Memory , Influenza Vaccines , Sex Characteristics , T-Lymphocytes , Vaccination , Female , Humans , Male , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , Influenza Vaccines/immunology , Influenza, Human/immunology , Influenza, Human/prevention & control , Interleukin-15/immunology , Toll-Like Receptors/immunology , T-Lymphocytes/cytology , T-Lymphocytes/immunology , Monocytes , Immunity, Innate/genetics , Immunity, Innate/immunology , Single-Cell Analysis , Healthy Volunteers
8.
Front Neuroinform ; 16: 990859, 2022.
Article in English | MEDLINE | ID: mdl-36313124

ABSTRACT

Around one third of epilepsies are drug-resistant. For these patients, seizures may be reduced or cured by surgically removing the epileptogenic zone (EZ), which is the portion of the brain giving rise to seizures. If noninvasive data are not sufficiently lateralizing or localizing, the EZ may need to be localized by precise implantation of intracranial electroencephalography (iEEG) electrodes. The choice of iEEG targets is influenced by clinicians' experience and personal knowledge of the literature, which leads to substantial variations in implantation strategies across different epilepsy centers. The clinical diagnostic pathway for surgical planning could be supported and standardized by an objective tool to suggest EZ locations, based on the outcomes of retrospective clinical cases reported in the literature. We present an open-source software tool that presents clinicians with an intuitive and data-driven visualization to infer the location of the symptomatogenic zone, that may overlap with the EZ. The likely EZ is represented as a probabilistic map overlaid on the patient's images, given a list of seizure semiologies observed in that specific patient. We demonstrate a case study on retrospective data from a patient treated in our unit, who underwent resective epilepsy surgery and achieved 1-year seizure freedom after surgery. The resected brain structures identified as EZ location overlapped with the regions highlighted by our tool, demonstrating its potential utility.

9.
STAR Protoc ; 3(3): 101474, 2022 09 16.
Article in English | MEDLINE | ID: mdl-35880119

ABSTRACT

OMiCC (OMics Compendia Commons) is a biologist-friendly web platform that facilitates data reuse and integration. Users can search over 40,000 publicly available gene expression studies, annotate and curate samples, and perform meta-analysis. Since the initial publication, we have incorporated RNA-seq datasets, compendia sharing, RESTful API support, and an additional meta-analysis method based on random effects. Here, we provide a step-by-step guide for using OMiCC. For complete details on the use and execution of this protocol, please refer to Shah et al. (2016).


Subject(s)
Gene Expression , Gene Expression/genetics
10.
Brain Commun ; 4(3): fcac130, 2022.
Article in English | MEDLINE | ID: mdl-35663381

ABSTRACT

Semiology describes the evolution of symptoms and signs during epileptic seizures and contributes to the evaluation of individuals with focal drug-resistant epilepsy for curative resection. Semiology varies in complexity from elementary sensorimotor seizures arising from primary cortex to complex behaviours and automatisms emerging from distributed cerebral networks. Detailed semiology interpreted by expert epileptologists may point towards the likely site of seizure onset, but this process is subjective. No study has captured the variances in semiological localizing values in a data-driven manner to allow objective and probabilistic determinations of implicated networks and nodes. We curated an open data set from the epilepsy literature, in accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, linking semiology to hierarchical brain localizations. A total of 11 230 data points were collected from 4643 patients across 309 articles, labelled using ground truths (postoperative seizure-freedom, concordance of imaging and neurophysiology, and/or invasive EEG) and a designation method that distinguished between semiologies arising from a predefined cortical region and descriptions of neuroanatomical localizations responsible for generating a particular semiology. This allowed us to mitigate temporal lobe publication bias by filtering studies that preselected patients based on prior knowledge of their seizure foci. Using this data set, we describe the probabilistic landscape of semiological localizing values as forest plots at the resolution of seven major brain regions: temporal, frontal, cingulate, parietal, occipital, insula, and hypothalamus, and five temporal subregions. We evaluated the intrinsic value of any one semiology over all other ictal manifestations. For example, epigastric auras implicated the temporal lobe with 83% probability when not accounting for the publication bias that favoured temporal lobe epilepsies. Unbiased results for a prior distribution of cortical localizations revised the prevalence of temporal lobe epilepsies from 66% to 44%. Therefore, knowledge about the presence of epigastric auras updates localization to the temporal lobe with an odds ratio (OR) of 2.4 [CI95% (1.9, 2.9); and specifically, mesial temporal structures OR: 2.8 (2.3, 2.9)], attesting the value of epigastric auras. As a further example, although head version is thought to implicate the frontal lobes, it did not add localizing value compared with the prior distribution of cortical localizations [OR: 0.9 (0.7, 1.2)]. Objectification of the localizing values of the 12 most common semiologies provides a complementary view of brain dysfunction to that of lesion-deficit mappings, as instead of linking brain regions to phenotypic-deficits, semiological phenotypes are linked back to brain sources. This work enables coupling of seizure propagation with ictal manifestations, and clinical support algorithms for localizing seizure phenotypes.

11.
J Allergy Clin Immunol Pract ; 10(5): 1178-1188, 2022 05.
Article in English | MEDLINE | ID: mdl-35300959

ABSTRACT

Artificial and augmented intelligence (AI) and machine learning (ML) methods are expanding into the health care space. Big data are increasingly used in patient care applications, diagnostics, and treatment decisions in allergy and immunology. How these technologies will be evaluated, approved, and assessed for their impact is an important consideration for researchers and practitioners alike. With the potential of ML, deep learning, natural language processing, and other assistive methods to redefine health care usage, a scaffold for the impact of AI technology on research and patient care in allergy and immunology is needed. An American Academy of Asthma Allergy and Immunology Health Information Technology and Education subcommittee workgroup was convened to perform a scoping review of AI within health care as well as the specialty of allergy and immunology to address impacts on allergy and immunology practice and research as well as potential challenges including education, AI governance, ethical and equity considerations, and potential opportunities for the specialty. There are numerous potential clinical applications of AI in allergy and immunology that range from disease diagnosis to multidimensional data reduction in electronic health records or immunologic datasets. For appropriate application and interpretation of AI, specialists should be involved in the design, validation, and implementation of AI in allergy and immunology. Challenges include incorporation of data science and bioinformatics into training of future allergists-immunologists.


Subject(s)
Hypersensitivity , Medical Informatics , Humans , Hypersensitivity/diagnosis , Hypersensitivity/therapy , Intelligence , Natural Language Processing , Technology
12.
medRxiv ; 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35233581

ABSTRACT

Viral infections can have profound and durable functional impacts on the immune system. There is an urgent need to characterize the long-term immune effects of SARS-CoV-2 infection given the persistence of symptoms in some individuals and the continued threat of novel variants. Here we use systems immunology, including longitudinal multimodal single cell analysis (surface proteins, transcriptome, and V(D)J sequences) from 33 previously healthy individuals after recovery from mild, non-hospitalized COVID-19 and 40 age- and sex-matched healthy controls with no history of COVID-19 to comparatively assess the post-infection immune status (mean: 151 days after diagnosis) and subsequent innate and adaptive responses to seasonal influenza vaccination. Identification of both sex-specific and -independent temporally stable changes, including signatures of T-cell activation and repression of innate defense/immune receptor genes (e.g., Toll-like receptors) in monocytes, suggest that mild COVID-19 can establish new post-recovery immunological set-points. COVID-19-recovered males had higher innate, influenza-specific plasmablast, and antibody responses after vaccination compared to healthy males and COVID-19-recovered females, partly attributable to elevated pre-vaccination frequencies of a GPR56 expressing CD8+ T-cell subset in male recoverees that are "poised" to produce higher levels of IFNγ upon inflammatory stimulation. Intriguingly, by day 1 post-vaccination in COVID-19-recovered subjects, the expression of the repressed genes in monocytes increased and moved towards the pre-vaccination baseline of healthy controls, suggesting that the acute inflammation induced by vaccination could partly reset the immune states established by mild COVID-19. Our study reveals sex-dimorphic immune imprints and in vivo functional impacts of mild COVID-19 in humans, suggesting that prior COVID-19, and possibly respiratory viral infections in general, could change future responses to vaccination and in turn, vaccines could help reset the immune system after COVID-19, both in an antigen-agnostic manner.

13.
Front Radiol ; 2: 866974, 2022.
Article in English | MEDLINE | ID: mdl-37492653

ABSTRACT

Identifying white matter (WM) tracts to locate eloquent areas for preoperative surgical planning is a challenging task. Manual WM tract annotations are often used but they are time-consuming, suffer from inter- and intra-rater variability, and noise intrinsic to diffusion MRI may make manual interpretation difficult. As a result, in clinical practice direct electrical stimulation is necessary to precisely locate WM tracts during surgery. A measure of WM tract segmentation unreliability could be important to guide surgical planning and operations. In this study, we use deep learning to perform reliable tract segmentation in combination with uncertainty quantification to measure segmentation unreliability. We use a 3D U-Net to segment white matter tracts. We then estimate model and data uncertainty using test time dropout and test time augmentation, respectively. We use a volume-based calibration approach to compute representative predicted probabilities from the estimated uncertainties. In our findings, we obtain a Dice of ≈0.82 which is comparable to the state-of-the-art for multi-label segmentation and Hausdorff distance <10mm. We demonstrate a high positive correlation between volume variance and segmentation errors, which indicates a good measure of reliability for tract segmentation ad uncertainty estimation. Finally, we show that calibrated predicted volumes are more likely to encompass the ground truth segmentation volume than uncalibrated predicted volumes. This study is a step toward more informed and reliable WM tract segmentation for clinical decision-making.

14.
J Neurosurg ; 136(2): 543-552, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34330090

ABSTRACT

OBJECTIVE: Anteromesial temporal lobe resection (ATLR) results in long-term seizure freedom in patients with drug-resistant focal mesial temporal lobe epilepsy (MTLE). There is significant anatomical variation in the anterior projection of the optic radiation (OR), known as Meyer's loop, between individuals and between hemispheres in the same individual. Damage to the OR results in contralateral superior temporal quadrantanopia that may preclude driving in 33%-66% of patients who achieve seizure freedom. Tractography of the OR has been shown to prevent visual field deficit (VFD) when surgery is performed in an interventional MRI (iMRI) suite. Because access to iMRI is limited at most centers, the authors investigated whether use of a neuronavigation system with a microscope overlay in a conventional theater is sufficient to prevent significant VFD during ATLR. METHODS: Twenty patients with drug-resistant MTLE who underwent ATLR (9 underwent right-side ATLR, and 9 were male) were recruited to participate in this single-center prospective cohort study. Tractography of the OR was performed with preoperative 3-T multishell diffusion data that were overlaid onto the surgical field by using a conventional neuronavigation system linked to a surgical microscope. Phantom testing confirmed overlay projection errors of < 1 mm. VFD was quantified preoperatively and 3 to 12 months postoperatively by using Humphrey and Esterman perimetry. RESULTS: Perimetry results were available for all patients postoperatively, but for only 11/20 (55%) patients preoperatively. In 1/20 (5%) patients, a significant VFD occurred that would prevent driving in the UK on the basis of the results on Esterman perimetry. The VFD was identified early in the series, despite the surgical approach not transgressing OR tractography, and was subsequently found to be due to retraction injury. Tractography was also used from this point onward to inform retractor placement, and no further significant VFDs occurred. CONCLUSIONS: Use of OR tractography with overlay outside of an iMRI suite, with application of an appropriate error margin, can be used during approach to the temporal horn of the lateral ventricle and carries a 5% risk of VFD that is significant enough to preclude driving postoperatively. OR tractography can also be used to inform retractor placement. These results warrant a larger prospective comparative study of the use of OR tractography-guided mesial temporal resection.


Subject(s)
Epilepsy, Temporal Lobe , Epilepsy, Temporal Lobe/complications , Epilepsy, Temporal Lobe/diagnostic imaging , Epilepsy, Temporal Lobe/surgery , Humans , Male , Prospective Studies , Seizures , Vision Disorders/etiology , Visual Pathways
15.
Front Digit Health ; 3: 559103, 2021.
Article in English | MEDLINE | ID: mdl-34713078

ABSTRACT

Background: Epilepsy affects 50 million people worldwide and a third are refractory to medication. If a discrete cerebral focus or network can be identified, neurosurgical resection can be curative. Most excisions are in the temporal-lobe, and are more likely to result in seizure-freedom than extra-temporal resections. However, less than half of patients undergoing surgery become entirely seizure-free. Localizing the epileptogenic-zone and individualized outcome predictions are difficult, requiring detailed evaluations at specialist centers. Methods: We used bespoke natural language processing to text-mine 3,800 electronic health records, from 309 epilepsy surgery patients, evaluated over a decade, of whom 126 remained entirely seizure-free. We investigated the diagnostic performances of machine learning models using set-of-semiology (SoS) with and without hippocampal sclerosis (HS) on MRI as features, using STARD criteria. Findings: Support Vector Classifiers (SVC) and Gradient Boosted (GB) decision trees were the best performing algorithms for temporal-lobe epileptogenic zone localization (cross-validated Matthews correlation coefficient (MCC) SVC 0.73 ± 0.25, balanced accuracy 0.81 ± 0.14, AUC 0.95 ± 0.05). Models that only used seizure semiology were not always better than internal benchmarks. The combination of multimodal features, however, enhanced performance metrics including MCC and normalized mutual information (NMI) compared to either alone (p < 0.0001). This combination of semiology and HS on MRI increased both cross-validated MCC and NMI by over 25% (NMI, SVC SoS: 0.35 ± 0.28 vs. SVC SoS+HS: 0.61 ± 0.27). Interpretation: Machine learning models using only the set of seizure semiology (SoS) cannot unequivocally perform better than benchmarks in temporal epileptogenic-zone localization. However, the combination of SoS with an imaging feature (HS) enhance epileptogenic lobe localization. We quantified this added NMI value to be 25% in absolute terms. Despite good performance in localization, no model was able to predict seizure-freedom better than benchmarks. The methods used are widely applicable, and the performance enhancements by combining other clinical, imaging and neurophysiological features could be similarly quantified. Multicenter studies are required to confirm generalizability. Funding: Wellcome/EPSRC Center for Interventional and Surgical Sciences (WEISS) (203145Z/16/Z).

16.
Sci Rep ; 11(1): 17127, 2021 08 24.
Article in English | MEDLINE | ID: mdl-34429470

ABSTRACT

There has been a significant rise in robotic trajectory guidance devices that have been utilised for stereotactic neurosurgical procedures. These devices have significant costs and associated learning curves. Previous studies reporting devices usage have not undertaken prospective parallel-group comparisons before their introduction, so the comparative differences are unknown. We study the difference in stereoelectroencephalography electrode implantation time between a robotic trajectory guidance device (iSYS1) and manual frameless implantation (PAD) in patients with drug-refractory focal epilepsy through a single-blinded randomised control parallel-group investigation of SEEG electrode implantation, concordant with CONSORT statement. Thirty-two patients (18 male) completed the trial. The iSYS1 returned significantly shorter median operative time for intracranial bolt insertion, 6.36 min (95% CI 5.72-7.07) versus 9.06 min (95% CI 8.16-10.06), p = 0.0001. The PAD group had a better median target point accuracy 1.58 mm (95% CI 1.38-1.82) versus 1.16 mm (95% CI 1.01-1.33), p = 0.004. The mean electrode implantation angle error was 2.13° for the iSYS1 group and 1.71° for the PAD groups (p = 0.023). There was no statistically significant difference for any other outcome. Health policy and hospital commissioners should consider these differences in the context of the opportunity cost of introducing robotic devices.Trial registration: ISRCTN17209025 ( https://doi.org/10.1186/ISRCTN17209025 ).


Subject(s)
Deep Brain Stimulation/methods , Electrodes, Implanted , Epilepsy/therapy , Postoperative Complications/epidemiology , Robotic Surgical Procedures/methods , Adult , Aged , Deep Brain Stimulation/adverse effects , Deep Brain Stimulation/instrumentation , Female , Humans , Male , Middle Aged , Robotic Surgical Procedures/adverse effects , Robotic Surgical Procedures/instrumentation
17.
Br J Neurosurg ; : 1-6, 2021 Aug 18.
Article in English | MEDLINE | ID: mdl-34406102

ABSTRACT

BACKGROUND: The piriform cortex (PC) occupies both banks of the endorhinal sulcus and has an important role in the pathophysiology of temporal lobe epilepsy (TLE). A recent study showed that resection of more than 50% of PC increased the odds of becoming seizure free by a factor of 16. OBJECTIVE: We report the feasibility of manual segmentation of PC and application of the Geodesic Information Flows (GIF) algorithm to automated segmentation, to guide resection. METHODS: Manual segmentation of PC was performed by two blinded independent examiners in 60 patients with TLE (55% Left TLE, 52% female) with a median age of 35 years (IQR, 29-47 years) and 20 controls (60% Women) with a median age of 39.5 years (IQR, 31-49). The GIF algorithm was used to create an automated pipeline for parcellating PC which was used to guide excision as part of temporal lobe resection for TLE. RESULTS: Right PC was larger in patients and controls. Parcellation of PC was used to guide anterior temporal lobe resection, with subsequent seizure freedom and no visual field or language deficit. CONCLUSION: Reliable segmentation of PC is feasible and can be applied prospectively to guide neurosurgical resection that increases the chances of a good outcome from temporal lobe resection for TLE.

18.
Comput Methods Programs Biomed ; 208: 106236, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34311413

ABSTRACT

BACKGROUND AND OBJECTIVE: Processing of medical images such as MRI or CT presents different challenges compared to RGB images typically used in computer vision. These include a lack of labels for large datasets, high computational costs, and the need of metadata to describe the physical properties of voxels. Data augmentation is used to artificially increase the size of the training datasets. Training with image subvolumes or patches decreases the need for computational power. Spatial metadata needs to be carefully taken into account in order to ensure a correct alignment and orientation of volumes. METHODS: We present TorchIO, an open-source Python library to enable efficient loading, preprocessing, augmentation and patch-based sampling of medical images for deep learning. TorchIO follows the style of PyTorch and integrates standard medical image processing libraries to efficiently process images during training of neural networks. TorchIO transforms can be easily composed, reproduced, traced and extended. Most transforms can be inverted, making the library suitable for test-time augmentation and estimation of aleatoric uncertainty in the context of segmentation. We provide multiple generic preprocessing and augmentation operations as well as simulation of MRI-specific artifacts. RESULTS: Source code, comprehensive tutorials and extensive documentation for TorchIO can be found at http://torchio.rtfd.io/. The package can be installed from the Python Package Index (PyPI) running pip install torchio. It includes a command-line interface which allows users to apply transforms to image files without using Python. Additionally, we provide a graphical user interface within a TorchIO extension in 3D Slicer to visualize the effects of transforms. CONCLUSION: TorchIO was developed to help researchers standardize medical image processing pipelines and allow them to focus on the deep learning experiments. It encourages good open-science practices, as it supports experiment reproducibility and is version-controlled so that the software can be cited precisely. Due to its modularity, the library is compatible with other frameworks for deep learning with medical images.


Subject(s)
Deep Learning , Humans , Image Processing, Computer-Assisted , Neural Networks, Computer , Reproducibility of Results , Software
19.
Comput Biol Med ; 135: 104643, 2021 08.
Article in English | MEDLINE | ID: mdl-34280774

ABSTRACT

Local fiber orientation distributions (FODs) can be computed from diffusion magnetic resonance imaging (dMRI). The accuracy and ability of FODs to resolve complex fiber configurations benefits from acquisition protocols that sample a high number of gradient directions, a high maximum b-value, and multiple b-values. However, acquisition time and scanners that follow these standards are limited in clinical settings, often resulting in dMRI acquired at a single shell (single b-value). In this work, we learn improved FODs from clinically acquired dMRI. We evaluate patch-based 3D convolutional neural networks (CNNs) on their ability to regress multi-shell FODs from single-shell FODs, using constrained spherical deconvolution (CSD). We evaluate U-Net and High-Resolution Network (HighResNet) 3D CNN architectures on data from the Human Connectome Project and an in-house dataset. We evaluate how well each CNN can resolve FODs 1) when training and testing on datasets with the same dMRI acquisition protocol; 2) when testing on a dataset with a different dMRI acquisition protocol than used to train the CNN; and 3) when testing on a dataset with a fewer number of gradient directions than used to train the CNN. This work is a step towards more accurate FOD estimation in time- and resource-limited clinical environments.


Subject(s)
Connectome , Image Processing, Computer-Assisted , Brain , Diffusion Magnetic Resonance Imaging , Humans , Neural Networks, Computer
20.
Childs Nerv Syst ; 37(8): 2643-2650, 2021 08.
Article in English | MEDLINE | ID: mdl-34148128

ABSTRACT

PURPOSE: Instability of the craniocervical junction in paediatric patients with skeletal dysplasia poses a unique set of challenges including anatomical abnormalities, poor bone quality, skeletal immaturity and associated general anaesthetic risks. Instrumented fixation provides optimal stabilisation and fusion rates. The small vertebrae make the placement of C2 pedicle screws technically demanding with low margins of error between the spinal canal and the vertebral artery. METHODS: We describe a novel clinical strategy utilising 3D-printed spinal screw trajectory guides (3D-SSTG) for individually planned C2 pedicle and laminar screws. The technique is based on a pre-operative CT scan and does not require intraoperative CT imaging. This reduces the radiation burden to the patient and forgoes the associated time and cost. The time for model generation and sterilisation was < 24 h. RESULTS: We describe two patients (3 and 6 years old) requiring occipitocervical instrumented fixation for cervical myelopathy secondary to Morquio syndrome with 3D-SSTGs. In the second case, bilateral laminar screw trajectories were also incorporated into the same guide due to the presence of high-riding vertebral arteries. Registration of the postoperative CT to the pre-operative imaging revealed that screws were optimally placed and accurately followed the predefined trajectory. CONCLUSION: To our knowledge, we present the first clinical report of 3D-printed spinal screw trajectory guides at the craniocervical junction in paediatric patients with skeletal dysplasia. The novel combination of multiple trajectories within the same guide provides the intraoperative flexibility of potential bailout options. Future studies will better define the potential of this technology to optimise personalised non-standard screw trajectories.


Subject(s)
Pedicle Screws , Spinal Fusion , Cervical Vertebrae/diagnostic imaging , Cervical Vertebrae/surgery , Child , Child, Preschool , Humans , Imaging, Three-Dimensional , Printing, Three-Dimensional
SELECTION OF CITATIONS
SEARCH DETAIL
...