Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38950417

ABSTRACT

OBJECTIVES: Large language models (LLMs) have demonstrated remarkable generalization and across diverse tasks, leading individuals to increasingly use them as personal assistants due to their emerging reasoning capabilities. Nevertheless, a notable obstacle emerges when including numerical/temporal data into these prompts, such as data sourced from wearables or electronic health records. LLMs employ tokenizers in their input that break down text into smaller units. However, tokenizers are not designed to represent numerical values and might struggle to understand repetitive patterns and context, treating consecutive values as separate tokens and disregarding their temporal relationships. This article discusses the challenges of representing and tokenizing temporal data. It argues that naively passing timeseries to LLMs can be ineffective due to the modality gap between numbers and text. MATERIALS AND METHODS: We conduct a case study by tokenizing a sample mobile sensing dataset using the OpenAI tokenizer. We also review recent works that feed timeseries data into LLMs for human-centric tasks, outlining common experimental setups like zero-shot prompting and few-shot learning. RESULTS: The case study shows that popular LLMs split timestamps and sensor values into multiple nonmeaningful tokens, indicating they struggle with temporal data. We find that preliminary works rely heavily on prompt engineering and timeseries aggregation to "ground" LLMs, hinting that the "modality gap" hampers progress. The literature was critically analyzed through the lens of models optimizing for expressiveness versus parameter efficiency. On one end of the spectrum, training large domain-specific models from scratch is expressive but not parameter-efficient. On the other end, zero-shot prompting of LLMs is parameter-efficient but lacks expressiveness for temporal data. DISCUSSION: We argue tokenizers are not optimized for numerical data, while the scarcity of timeseries examples in training corpora exacerbates difficulties. We advocate balancing model expressiveness and computational efficiency when integrating temporal data. Prompt tuning, model grafting, and improved tokenizers are highlighted as promising directions. CONCLUSION: We underscore that despite promising capabilities, LLMs cannot meaningfully process temporal data unless the input representation is addressed. We argue that this paradigm shift in how we leverage pretrained models will particularly affect the area of biomedical signals, given the lack of modality-specific foundation models.

2.
R Soc Open Sci ; 10(11): 230806, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38026044

ABSTRACT

Advances in wearable sensing and mobile computing have enabled the collection of health and well-being data outside of traditional laboratory and hospital settings, paving the way for a new era of mobile health. Meanwhile, artificial intelligence (AI) has made significant strides in various domains, demonstrating its potential to revolutionize healthcare. Devices can now diagnose diseases, predict heart irregularities and unlock the full potential of human cognition. However, the application of machine learning (ML) to mobile health sensing poses unique challenges due to noisy sensor measurements, high-dimensional data, sparse and irregular time series, heterogeneity in data, privacy concerns and resource constraints. Despite the recognition of the value of mobile sensing, leveraging these datasets has lagged behind other areas of ML. Furthermore, obtaining quality annotations and ground truth for such data is often expensive or impractical. While recent large-scale longitudinal studies have shown promise in leveraging wearable sensor data for health monitoring and prediction, they also introduce new challenges for data modelling. This paper explores the challenges and opportunities of human-centred AI for mobile health, focusing on key sensing modalities such as audio, location and activity tracking. We discuss the limitations of current approaches and propose potential solutions.

3.
J Med Internet Res ; 25: e44804, 2023 05 09.
Article in English | MEDLINE | ID: mdl-37126593

ABSTRACT

BACKGROUND: To date, performance comparisons between men and machines have been carried out in many health domains. Yet machine learning (ML) models and human performance comparisons in audio-based respiratory diagnosis remain largely unexplored. OBJECTIVE: The primary objective of this study was to compare human clinicians and an ML model in predicting COVID-19 from respiratory sound recordings. METHODS: In this study, we compared human clinicians and an ML model in predicting COVID-19 from respiratory sound recordings. Prediction performance on 24 audio samples (12 tested positive) made by 36 clinicians with experience in treating COVID-19 or other respiratory illnesses was compared with predictions made by an ML model trained on 1162 samples. Each sample consisted of voice, cough, and breathing sound recordings from 1 subject, and the length of each sample was around 20 seconds. We also investigated whether combining the predictions of the model and human experts could further enhance the performance in terms of both accuracy and confidence. RESULTS: The ML model outperformed the clinicians, yielding a sensitivity of 0.75 and a specificity of 0.83, whereas the best performance achieved by the clinicians was 0.67 in terms of sensitivity and 0.75 in terms of specificity. Integrating the clinicians' and the model's predictions, however, could enhance performance further, achieving a sensitivity of 0.83 and a specificity of 0.92. CONCLUSIONS: Our findings suggest that the clinicians and the ML model could make better clinical decisions via a cooperative approach and achieve higher confidence in audio-based respiratory diagnosis.


Subject(s)
COVID-19 , Respiratory Sounds , Respiratory Tract Diseases , Humans , Male , COVID-19/diagnosis , Machine Learning , Physicians , Respiratory Tract Diseases/diagnosis , Deep Learning
4.
Front Digit Health ; 5: 1058163, 2023.
Article in English | MEDLINE | ID: mdl-36969956

ABSTRACT

The COVID-19 pandemic has caused massive humanitarian and economic damage. Teams of scientists from a broad range of disciplines have searched for methods to help governments and communities combat the disease. One avenue from the machine learning field which has been explored is the prospect of a digital mass test which can detect COVID-19 from infected individuals' respiratory sounds. We present a summary of the results from the INTERSPEECH 2021 Computational Paralinguistics Challenges: COVID-19 Cough, (CCS) and COVID-19 Speech, (CSS).

5.
NPJ Digit Med ; 5(1): 176, 2022 Dec 02.
Article in English | MEDLINE | ID: mdl-36460766

ABSTRACT

Cardiorespiratory fitness is an established predictor of metabolic disease and mortality. Fitness is directly measured as maximal oxygen consumption (VO2max), or indirectly assessed using heart rate responses to standard exercise tests. However, such testing is costly and burdensome because it requires specialized equipment such as treadmills and oxygen masks, limiting its utility. Modern wearables capture dynamic real-world data which could improve fitness prediction. In this work, we design algorithms and models that convert raw wearable sensor data into cardiorespiratory fitness estimates. We validate these estimates' ability to capture fitness profiles in free-living conditions using the Fenland Study (N=11,059), along with its longitudinal cohort (N = 2675), and a third external cohort using the UK Biobank Validation Study (N = 181) who underwent maximal VO2max testing, the gold standard measurement of fitness. Our results show that the combination of wearables and other biomarkers as inputs to neural networks yields a strong correlation to ground truth in a holdout sample (r = 0.82, 95CI 0.80-0.83), outperforming other approaches and models and detects fitness change over time (e.g., after 7 years). We also show how the model's latent space can be used for fitness-aware patient subtyping paving the way to scalable interventions and personalized trial recruitment. These results demonstrate the value of wearables for fitness estimation that today can be measured only with laboratory tests.

6.
J Med Internet Res ; 24(6): e37004, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35653606

ABSTRACT

BACKGROUND: Recent work has shown the potential of using audio data (eg, cough, breathing, and voice) in the screening for COVID-19. However, these approaches only focus on one-off detection and detect the infection, given the current audio sample, but do not monitor disease progression in COVID-19. Limited exploration has been put forward to continuously monitor COVID-19 progression, especially recovery, through longitudinal audio data. Tracking disease progression characteristics and patterns of recovery could bring insights and lead to more timely treatment or treatment adjustment, as well as better resource management in health care systems. OBJECTIVE: The primary objective of this study is to explore the potential of longitudinal audio samples over time for COVID-19 progression prediction and, especially, recovery trend prediction using sequential deep learning techniques. METHODS: Crowdsourced respiratory audio data, including breathing, cough, and voice samples, from 212 individuals over 5-385 days were analyzed, alongside their self-reported COVID-19 test results. We developed and validated a deep learning-enabled tracking tool using gated recurrent units (GRUs) to detect COVID-19 progression by exploring the audio dynamics of the individuals' historical audio biomarkers. The investigation comprised 2 parts: (1) COVID-19 detection in terms of positive and negative (healthy) tests using sequential audio signals, which was primarily assessed in terms of the area under the receiver operating characteristic curve (AUROC), sensitivity, and specificity, with 95% CIs, and (2) longitudinal disease progression prediction over time in terms of probability of positive tests, which was evaluated using the correlation between the predicted probability trajectory and self-reported labels. RESULTS: We first explored the benefits of capturing longitudinal dynamics of audio biomarkers for COVID-19 detection. The strong performance, yielding an AUROC of 0.79, a sensitivity of 0.75, and a specificity of 0.71 supported the effectiveness of the approach compared to methods that do not leverage longitudinal dynamics. We further examined the predicted disease progression trajectory, which displayed high consistency with longitudinal test results with a correlation of 0.75 in the test cohort and 0.86 in a subset of the test cohort with 12 (57.1%) of 21 COVID-19-positive participants who reported disease recovery. Our findings suggest that monitoring COVID-19 evolution via longitudinal audio data has potential in the tracking of individuals' disease progression and recovery. CONCLUSIONS: An audio-based COVID-19 progression monitoring system was developed using deep learning techniques, with strong performance showing high consistency between the predicted trajectory and the test results over time, especially for recovery trend predictions. This has good potential in the postpeak and postpandemic era that can help guide medical treatment and optimize hospital resource allocations. The changes in longitudinal audio samples, referred to as audio dynamics, are associated with COVID-19 progression; thus, modeling the audio dynamics can potentially capture the underlying disease progression process and further aid COVID-19 progression prediction. This framework provides a flexible, affordable, and timely tool for COVID-19 tracking, and more importantly, it also provides a proof of concept of how telemonitoring could be applicable to respiratory diseases monitoring, in general.


Subject(s)
COVID-19 , Deep Learning , Voice , Cough/diagnosis , Disease Progression , Humans
7.
Sci Rep ; 12(1): 7956, 2022 05 13.
Article in English | MEDLINE | ID: mdl-35562527

ABSTRACT

The adoption of multisensor wearables presents the opportunity of longitudinal monitoring of sleep in large populations. Personalized yet device-agnostic algorithms can sidestep laborious human annotations and objectify cross-cohort comparisons. We developed and tested a heart rate-based algorithm that captures inter- and intra-individual sleep differences in free-living conditions and does not require human input. We evaluated it on four study cohorts using different research- and consumer-grade devices for over 2000 nights. Recording periods included both 24 h free-living and conventional lab-based night-only data. We compared our optimized method against polysomnography, sleep diaries and sleep periods produced through a state-of-the-art acceleration based method. Against sleep diaries, the algorithm yielded a mean squared error of 0.04-0.06 and a total sleep time (TST) deviation of [Formula: see text]2.70 (± 5.74) and 12.80 (± 3.89) minutes, respectively. When evaluated with PSG lab studies, the MSE ranged between 0.06 and 0.11 yielding a time deviation between [Formula: see text]29.07 and [Formula: see text]55.04 minutes. These results showcase the value of this open-source, device-agnostic algorithm for the reliable inference of sleep in free-living conditions and in the absence of annotations.


Subject(s)
Wearable Electronic Devices , Heart Rate , Humans , Polysomnography/methods , Reproducibility of Results , Sleep/physiology
8.
J Pers Soc Psychol ; 122(2): 286-309, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35130023

ABSTRACT

Are there universal patterns in musical preferences? To address this question, we built on theory and research in personality, cultural, and music psychology to map the terrain of preferences for Western music using data from 356,649 people across six continents. In Study 1 (N = 284,935), participants in 53 countries completed a genre favorability measure, and in Study 2 (N = 71,714), participants in 36 countries completed an audio-based measure of preferential reactions to music. Both studies included self-report measures of the Big Five personality traits and demographics. Results converged to show that individual differences in preferences for Western music can be organized in terms of five latent factors that are invariant (i.e., universal) across countries and that generalize across assessment methods. Furthermore, the patterns of correlations between personality traits and musical preferences were largely consistent across countries and assessment methods. For example, trait Extraversion was correlated with stronger reactions to Contemporary musical styles (which feature rhythmic, upbeat, and electronic attributes), whereas trait Openness was correlated with stronger reactions to Sophisticated musical styles (which feature complex and cerebral attributes often heard in improvisational and instrumental music). The patterns of correlations between musical preferences and gender differences, ethnicity, and other sociodemographic metrics were also largely invariant across countries. Together, these findings strongly suggest that there are universal patterns in preferences for Western music, providing a foundation on which to develop and test hypotheses about the interactions between music, psychology, biology, and culture. (PsycInfo Database Record (c) 2022 APA, all rights reserved).


Subject(s)
Music , Choice Behavior , Extraversion, Psychological , Humans , Individuality , Personality
9.
Patterns (N Y) ; 3(2): 100410, 2022 Feb 11.
Article in English | MEDLINE | ID: mdl-35199063

ABSTRACT

Medicine is undergoing an unprecedented digital transformation, as massive amounts of health data are being produced, gathered, and curated, ranging from in-hospital (e.g., intensive care unit [ICU]) to person-generated data (wearables). Annotating all these data for training purposes in order to feed to deep learning models for pattern recognition is impractical. Here, we discuss some exciting recent results of self-supervised learning (SSL) applications to high-resolution health signals. These examples leverage unlabeled data to learn meaningful representations that can generalize to situations where the ground truth is inadequate or simply infeasible to collect due to the high burden or associated costs. The most prominent bottleneck of deep learning today is access to labeled, carefully curated datasets, and self-supervision on health signals opens up new possibilities to eliminate data silos through general-purpose models that can transfer to low-resource environments and tasks.

10.
NPJ Digit Med ; 5(1): 16, 2022 Jan 28.
Article in English | MEDLINE | ID: mdl-35091662

ABSTRACT

To identify Coronavirus disease (COVID-19) cases efficiently, affordably, and at scale, recent work has shown how audio (including cough, breathing and voice) based approaches can be used for testing. However, there is a lack of exploration of how biases and methodological decisions impact these tools' performance in practice. In this paper, we explore the realistic performance of audio-based digital testing of COVID-19. To investigate this, we collected a large crowdsourced respiratory audio dataset through a mobile app, alongside symptoms and COVID-19 test results. Within the collected dataset, we selected 5240 samples from 2478 English-speaking participants and split them into participant-independent sets for model development and validation. In addition to controlling the language, we also balanced demographics for model training to avoid potential acoustic bias. We used these audio samples to construct an audio-based COVID-19 prediction model. The unbiased model took features extracted from breathing, coughs and voice signals as predictors and yielded an AUC-ROC of 0.71 (95% CI: 0.65-0.77). We further explored several scenarios with different types of unbalanced data distributions to demonstrate how biases and participant splits affect the performance. With these different, but less appropriate, evaluation strategies, the performance could be overestimated, reaching an AUC up to 0.90 (95% CI: 0.85-0.95) in some circumstances. We found that an unrealistic experimental setting can result in misleading, sometimes over-optimistic, performance. Instead, we reported complete and reliable results on crowd-sourced data, which would allow medical professionals and policy makers to accurately assess the value of this technology and facilitate its deployment.

12.
J Am Med Inform Assoc ; 28(9): 2002-2008, 2021 08 13.
Article in English | MEDLINE | ID: mdl-33647989

ABSTRACT

In this perspective we want to highlight the rise of what we call "digital phenotyping" or inferring insights about peopleãs health and behavior from their digital devices and data, and the challenges this introduces. Indeed, the collection, processing, and storage of data comes with significant ethical, security and data governance considerations. The COVID-19 pandemic has laid bare the importance of scientific data and modeling, both to understand the nature and spread of the disease, and to develop treatment. But digital devices have also played a (controversial) role, with track and trace systems and increasingly "vaccine passports" being rolled out to help societies open back up. These systems epitomize a wider and longer-standing trend towards seeing almost any form of personal data as potentially health data, especially with the rise of consumer health trackers and other gadgets. Here, we offer an overview of the risks this introduces, drawing on the earlier revolution in genomic sequencing, and propose guidelines to help protect privacy whilst utilizing personal data to help get society back up to speed.


Subject(s)
COVID-19 , Pandemics , Humans , Privacy , SARS-CoV-2
13.
Health Informatics J ; 25(3): 811-827, 2019 09.
Article in English | MEDLINE | ID: mdl-28820010

ABSTRACT

This study examines the clinical decision support systems in healthcare, in particular about the prevention, diagnosis and treatment of respiratory diseases, such as Asthma and chronic obstructive pulmonary disease. The empirical pulmonology study of a representative sample (n = 132) attempts to identify the major factors that contribute to the diagnosis of these diseases. Machine learning results show that in chronic obstructive pulmonary disease's case, Random Forest classifier outperforms other techniques with 97.7 per cent precision, while the most prominent attributes for diagnosis are smoking, forced expiratory volume 1, age and forced vital capacity. In asthma's case, the best precision, 80.3 per cent, is achieved again with the Random Forest classifier, while the most prominent attribute is MEF2575.


Subject(s)
Asthma/diagnosis , Machine Learning/trends , Pulmonary Disease, Chronic Obstructive/diagnosis , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Female , Humans , Infant , Male , Middle Aged , Respiratory Function Tests/methods
SELECTION OF CITATIONS
SEARCH DETAIL