Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Imaging Radiat Oncol ; 27: 100465, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37449022

ABSTRACT

Background and purpose: There is no consensus about an ideal robust optimization (RO) strategy for proton therapy of targets with large intrafractional motion. We investigated the plan robustness of 3D and different 4D RO strategies. Materials and methods: For eight non-small cell lung cancer patients with clinical target volume (CTV) motion >5 mm, different RO approaches were investigated: 3DRO considering the average CT (AvgCT) with a target density override, 4DRO considering three/all 4DCT phases, and 4DRO considering the AvgCT and three/all 4DCT phases. Robustness against setup/range errors, interplay effects based on breathing and machine log file data for deliveries with/without rescanning, and interfractional anatomical changes were analyzed for target coverage and OAR sparing. Results: All nominal plans fulfilled the clinical requirements with individual CTV coverage differences <2pp; 4DRO without AvgCT generated the most conformal dose distributions. Robustness against setup/range errors was best for 4DRO with AvgCT (18% more passed error scenarios than 3DRO). Interplay effects caused fraction-wise median CTV coverage loss of 3pp and missed maximum dose constraints for heart and esophagus in 18% of scenarios. CTV coverage and OAR sparing fulfilled requirements in all cases when accumulating four interplay scenarios. Interfractional changes caused less target misses for RO with AvgCT compared to 4DRO without AvgCT (≤42%/33% vs. ≥56%/44% failed single/accumulated scenarios). Conclusions: All RO strategies provided acceptable plans with equally low robustness against interplay effects demanding other mitigation than rescanning to ensure fraction-wise target coverage. 4DRO considering three phases and the AvgCT provided best compromise on planning effort and robustness.

2.
Med Phys ; 49(6): 3538-3549, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35342943

ABSTRACT

PURPOSE: The unpredictable interplay between dynamic proton therapy delivery and target motion in the thorax can lead to severe dose distortions. A fraction-wise four-dimensional (4D) dose reconstruction workflow allows for the assessment of the applied dose after patient treatment while considering the actual beam delivery sequence extracted from machine log files, the recorded breathing pattern and the geometric information from a 4D computed tomography scan (4DCT). Such an algorithm capable of accounting for amplitude-sorted 4DCTs was implemented and its accuracy as well as its sensitivity to input parameter variations was experimentally evaluated. METHODS: An anthropomorphic thorax phantom with a movable insert containing a target surrogate and a radiochromic film was irradiated with a monoenergetic field for various 1D target motion forms (sin, sin4 ) and peak-to-peak amplitudes (5/10/15/20/30 mm). The measured characteristic film dose distributions were compared to the respective sections in the 4D reconstructed doses using a 2D γ-analysis (3 mm, 3%); γ-pass rates were derived for different dose grid resolutions (1 mm/3 mm) and deformable image registrations (DIR, automatic/manual) applied during the 4D dose reconstruction process. In an additional analysis, the sensitivity of reconstructed dose distributions against potential asynchronous timing of the motion and machine log files was investigated for both a monoenergetic field and more realistic 4D robustly optimized fields by artificially introduced offsets of ±1/5/25/50/250 ms. The resulting dose distributions with asynchronized log files were compared to those with synchronized log files by means of a 3D γ-analysis (1 mm, 1%) and the evaluation of absolute dose differences. RESULTS: The induced characteristic interplay patterns on the films were well reproduced by the 4D dose reconstruction with 2D γ-pass rates ≥95% for almost all cases with motion magnitudes ≤15 mm. In general, the 2D γ-pass rates showed a significant decrease for larger motion amplitudes and increase when using a finer dose grid resolution but were not affected by the choice of motion form (sin, sin4 ). There was also a trend, though not statistically significant, toward the manually defined DIR for better quality of the reconstructed dose distributions in the area imaged by the film. The 4D dose reconstruction results for the monoenergetic as well as the 4D robustly optimized fields were robust against small asynchronies between motion and machine log files of up to 5 ms, which is in the order of potential network latencies. CONCLUSIONS: We have implemented a 4D log file-based proton dose reconstruction that accounts for amplitude-sorted 4DCTs. Its accuracy was proven to be clinically acceptable for target motion magnitudes of up to 15 mm. Particular attention should be paid to the synchronization of the log file generating systems as the reconstructed dose distribution may vary with log file asynchronies larger than those caused by realistic network delays.


Subject(s)
Lung Neoplasms , Proton Therapy , Four-Dimensional Computed Tomography/methods , Humans , Phantoms, Imaging , Proton Therapy/methods , Protons , Radiotherapy Planning, Computer-Assisted/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...