Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
G3 (Bethesda) ; 8(10): 3367-3375, 2018 10 03.
Article in English | MEDLINE | ID: mdl-30131329

ABSTRACT

Soybean is the world's leading source of vegetable protein and demand for its seed continues to grow. Breeders have successfully increased soybean yield, but the genetic architecture of yield and key agronomic traits is poorly understood. We developed a 40-mating soybean nested association mapping (NAM) population of 5,600 inbred lines that were characterized by single nucleotide polymorphism (SNP) markers and six agronomic traits in field trials in 22 environments. Analysis of the yield, agronomic, and SNP data revealed 23 significant marker-trait associations for yield, 19 for maturity, 15 for plant height, 17 for plant lodging, and 29 for seed mass. A higher frequency of estimated positive yield alleles was evident from elite founder parents than from exotic founders, although unique desirable alleles from the exotic group were identified, demonstrating the value of expanding the genetic base of US soybean breeding.


Subject(s)
Glycine max/genetics , Quantitative Trait Loci , Quantitative Trait, Heritable , Chromosome Mapping , Chromosomes, Plant , Gene Expression Regulation, Plant , Genetics, Population , Genome, Plant , Phenotype , Polymorphism, Single Nucleotide
2.
Plant Genome ; 10(2)2017 07.
Article in English | MEDLINE | ID: mdl-28724064

ABSTRACT

A set of nested association mapping (NAM) families was developed by crossing 40 diverse soybean [ (L.) Merr.] genotypes to the common cultivar. The 41 parents were deeply sequenced for SNP discovery. Based on the polymorphism of the single-nucleotide polymorphisms (SNPs) and other selection criteria, a set of SNPs was selected to be included in the SoyNAM6K BeadChip for genotyping the parents and 5600 RILs from the 40 families. Analysis of the SNP profiles of the RILs showed a low average recombination rate. We constructed genetic linkage maps for each family and a composite linkage map based on recombinant inbred lines (RILs) across the families and identified and annotated 525,772 high confidence SNPs that were used to impute the SNP alleles in the RILs. The segregation distortion in most families significantly favored the alleles from the female parent, and there was no significant difference of residual heterozygosity in the euchromatic vs. heterochromatic regions. The genotypic datasets for the RILs and parents are publicly available and are anticipated to be useful to map quantitative trait loci (QTL) controlling important traits in soybean.


Subject(s)
Genes, Plant , Glycine max/genetics , Alleles , Genetic Linkage , Genotype , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Recombination, Genetic
3.
Plant Genome ; 8(3): eplantgenome2015.04.0024, 2015 Nov.
Article in English | MEDLINE | ID: mdl-33228276

ABSTRACT

Population structure analyses and genome-wide association studies (GWAS) conducted on crop germplasm collections provide valuable information on the frequency and distribution of alleles governing economically important traits. The value of these analyses is substantially enhanced when the accession numbers can be increased from ∼1,000 to ∼10,000 or more. In this research, we conducted the first comprehensive analysis of population structure on the collection of 14,000 soybean accessions [Glycine max (L.) Merr. and G. soja Siebold & Zucc.] using a 50K-SNP chip. Accessions originating from Japan were relatively homogenous and distinct from the Korean accessions. As a whole, both Japanese and Korean accessions diverged from the Chinese accessions. The ancestry of founders of the American accessions derived mostly from two Chinese subpopulations, which reflects the composition of the American accessions as a whole. A 12,000 accession GWAS conducted on seed protein and oil is the largest reported to date in plants and identified single nucleotide polymorphisms (SNPs) with strong signals on chromosomes 20 and 15. A chromosome 20 region previously reported to be important for protein and oil content was further narrowed and now contains only three plausible candidate genes. The haplotype effects show a strong negative relationship between oil and protein at this locus, indicating negative pleiotropic effects or multiple closely linked loci in repulsion phase linkage. The vast majority of accessions carry the haplotype allele conferring lower protein and higher oil. Our results provide a fuller understanding of the distribution of genetic variation contained within the USDA soybean collection and how it relates to phenotypic variation for economically important traits.

SELECTION OF CITATIONS
SEARCH DETAIL