Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 104
Filter
1.
bioRxiv ; 2023 Sep 02.
Article in English | MEDLINE | ID: mdl-37693628

ABSTRACT

Tropomyosins coat actin filaments and impact actin-related signaling and cell morphogenesis. Genome-wide association studies have linked Tropomyosin 1 (TPM1) with human blood trait variation. Prior work suggested that TPM1 regulated blood cell formation in vitro, but it was unclear how or when TPM1 affected hematopoiesis. Using gene-edited induced pluripotent stem cell (iPSC) model systems, TPM1 knockout was found to augment developmental cell state transitions, as well as TNFα and GTPase signaling pathways, to promote hemogenic endothelial (HE) cell specification and hematopoietic progenitor cell (HPC) production. Single-cell analyses showed decreased TPM1 expression during human HE specification, suggesting that TPM1 regulated in vivo hematopoiesis via similar mechanisms. Indeed, analyses of a TPM1 gene trap mouse model showed that TPM1 deficiency enhanced the formation of HE during embryogenesis. These findings illuminate novel effects of TPM1 on developmental hematopoiesis.

2.
Genes Dev ; 37(13-14): 605-620, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37536952

ABSTRACT

The transcription factor RUNX1 is mutated in familial platelet disorder with associated myeloid malignancy (FPDMM) and in sporadic myelodysplastic syndrome and leukemia. RUNX1 was shown to regulate inflammation in multiple cell types. Here we show that RUNX1 is required in granulocyte-monocyte progenitors (GMPs) to epigenetically repress two inflammatory signaling pathways in neutrophils: Toll-like receptor 4 (TLR4) and type I interferon (IFN) signaling. RUNX1 loss in GMPs augments neutrophils' inflammatory response to the TLR4 ligand lipopolysaccharide through increased expression of the TLR4 coreceptor CD14. RUNX1 binds Cd14 and other genes encoding proteins in the TLR4 and type I IFN signaling pathways whose chromatin accessibility increases when RUNX1 is deleted. Transcription factor footprints for the effectors of type I IFN signaling-the signal transducer and activator of transcription (STAT1::STAT2) and interferon regulatory factors (IRFs)-were enriched in chromatin that gained accessibility in both GMPs and neutrophils when RUNX1 was lost. STAT1::STAT2 and IRF motifs were also enriched in the chromatin of retrotransposons that were derepressed in RUNX1-deficient GMPs and neutrophils. We conclude that a major direct effect of RUNX1 loss in GMPs is the derepression of type I IFN and TLR4 signaling, resulting in a state of fixed maladaptive innate immunity.


Subject(s)
Neutrophils , Toll-Like Receptor 4 , Toll-Like Receptor 4/metabolism , Monocytes/metabolism , Core Binding Factor Alpha 2 Subunit/genetics , Core Binding Factor Alpha 2 Subunit/metabolism , Cytokines/metabolism , Chromatin/metabolism , STAT1 Transcription Factor/metabolism
3.
bioRxiv ; 2023 Jan 28.
Article in English | MEDLINE | ID: mdl-36747636

ABSTRACT

The transcription factor RUNX1 is mutated in familial platelet disorder with associated myeloid malignancies (FPDMM) and in sporadic myelodysplastic syndrome and leukemia. RUNX1 regulates inflammation in multiple cell types. Here we show that RUNX1 is required in granulocyte-monocyte progenitors (GMPs) to restrict the inflammatory response of neutrophils to toll-like receptor 4 (TLR4) signaling. Loss of RUNX1 in GMPs increased the TLR4 coreceptor CD14 on neutrophils, which contributed to neutrophils’ increased inflammatory cytokine production in response to the TLR4 ligand lipopolysaccharide. RUNX1 loss increased the chromatin accessibility of retrotransposons in GMPs and neutrophils and induced a type I interferon signature characterized by enriched footprints for signal transducer and activator of transcription (STAT1::STAT2) and interferon regulatory factors (IRF) in opened chromatin, and increased expression of interferon-stimulated genes. The overproduction of inflammatory cytokines by neutrophils was reversed by inhibitors of type I IFN signaling. We conclude that RUNX1 restrains the chromatin accessibility of retrotransposons in GMPs and neutrophils, and that loss of RUNX1 increases proinflammatory cytokine production by elevating tonic type I interferon signaling.

4.
Hemasphere ; 7(2): e824, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36741355

ABSTRACT

RUNX1 familial platelet disorder (RUNX1-FPD) is a hematopoietic disorder caused by germline loss-of-function mutations in the RUNX1 gene and characterized by thrombocytopathy, thrombocytopenia, and an increased risk of developing hematologic malignancies, mostly of myeloid origin. Disease pathophysiology has remained incompletely understood, in part because of a shortage of in vivo models recapitulating the germline RUNX1 loss of function found in humans, precluding the study of potential contributions of non-hematopoietic cells to disease pathogenesis. Here, we studied mice harboring a germline hypomorphic mutation of one Runx1 allele with a loss-of-function mutation in the other Runx1 allele (Runx1 L148A/- mice), which display many hematologic characteristics found in human RUNX1-FPD patients. Runx1 L148A/- mice displayed robust and pronounced thrombocytopenia and myeloid-biased hematopoiesis, associated with an HSC intrinsic reconstitution defect in lymphopoiesis and expansion of myeloid progenitor cell pools. We demonstrate that specific deletion of Runx1 from bone marrow stromal cells in Prrx1-cre;Runx1 fl/fl mice did not recapitulate these abnormalities, indicating that the hematopoietic abnormalities are intrinsic to the hematopoietic lineage, and arguing against a driving role of the bone marrow microenvironment. In conclusion, we report a RUNX1-FPD mouse model faithfully recapitulating key characteristics of human disease. Findings do not support a driving role of ancillary, non-hematopoietic cells in the disruption of hematopoiesis under homeostatic conditions.

5.
Dev Cell ; 57(23): 2652-2660.e3, 2022 12 05.
Article in English | MEDLINE | ID: mdl-36473461

ABSTRACT

Placental fetal macrophages (fMacs) are the only immune cells on the fetal side of the placental barrier. Mouse models have not been used to test their function because they have previously been found to have distinct cellular origins and functions in mice and humans. Here, we test the ontogeny of mouse placental fMacs. Using a new Hoxa13Cre allele that labels all placental endothelial cells (ECs), we demonstrate that mouse placenta fMacs do not arise from placental endothelium. Instead, lineage tracing studies using Tie2-Cre and Cx3cr1CreERT2 alleles demonstrate that mouse placental fMacs arise from yolk sac endothelium. Administration of blocking antibodies against CSF1R at E6.5 and E7.5 results in depletion of placental fMacs throughout pregnancy, and this suggests a yolk sac origin, similar to that in human fMacs. This Matters Arising paper is in response to Liang et al., published in Developmental Cell. A response by Liang and Liu is published in this issue.


Subject(s)
Endothelial Cells , Placenta , Pregnancy , Female , Animals , Humans , Mice
6.
Blood ; 139(19): 2942-2957, 2022 05 12.
Article in English | MEDLINE | ID: mdl-35245372

ABSTRACT

The hematopoietic stem cells (HSCs) that produce blood for the lifetime of an animal arise from RUNX1+ hemogenic endothelial cells (HECs) in the embryonic vasculature through a process of endothelial-to-hematopoietic transition (EHT). Studies have identified inflammatory mediators and fluid shear forces as critical environmental stimuli for EHT, raising the question of how such diverse inputs are integrated to drive HEC specification. Endothelial cell MEKK3-KLF2/4 signaling can be activated by both fluid shear forces and inflammatory mediators, and it plays roles in cardiovascular development and disease that have been linked to both stimuli. Here we demonstrate that MEKK3 and KLF2/4 are required in endothelial cells for the specification of RUNX1+ HECs in both the yolk sac and dorsal aorta of the mouse embryo and for their transition to intraaortic hematopoietic cluster (IAHC) cells. The inflammatory mediators lipopolysaccharide and interferon-γ increase RUNX1+ HECs in an MEKK3-dependent manner. Maternal administration of catecholamines that stimulate embryo cardiac function and accelerate yolk sac vascular remodeling increases EHT by wild-type but not MEKK3-deficient endothelium. These findings identify MEKK-KLF2/4 signaling as an essential pathway for EHT and provide a molecular basis for the integration of diverse environmental inputs, such as inflammatory mediators and hemodynamic forces, during definitive hematopoiesis.


Subject(s)
Core Binding Factor Alpha 2 Subunit , Hemangioblasts , Hematopoiesis , Animals , Cell Differentiation , Core Binding Factor Alpha 2 Subunit/metabolism , Endothelium/metabolism , Hemangioblasts/cytology , Hemangioblasts/metabolism , Hemodynamics , Inflammation Mediators/metabolism , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , MAP Kinase Kinase Kinase 3/metabolism , Mice
8.
Development ; 149(8)2022 04 15.
Article in English | MEDLINE | ID: mdl-35043940

ABSTRACT

Hemogenic endothelial (HE) cells in the dorsal aorta undergo an endothelial-to-hematopoietic transition (EHT) to form multipotent progenitors, lympho-myeloid biased progenitors (LMPs), pre-hematopoietic stem cells (pre-HSCs) and adult-repopulating HSCs. These briefly accumulate in intra-arterial hematopoietic clusters (IAHCs) before being released into the circulation. It is generally assumed that the number of IAHC cells correlates with the number of HSCs. Here, we show that changes in the number of IAHC cells, LMPs and HSCs can be uncoupled. Mutations impairing MyD88-dependent toll-like receptor (TLR) signaling decreased the number of IAHC cells and LMPs, but increased the number of HSCs in the aorta-gonad-mesonephros region of mouse embryos. TLR4-deficient embryos generated normal numbers of HE cells, but IAHC cell proliferation decreased. Loss of MyD88-dependent TLR signaling in innate immune myeloid cells had no effect on IAHC cell numbers. Instead, TLR4 deletion in endothelial cells (ECs) recapitulated the phenotype observed with germline deletion, demonstrating that MyD88-dependent TLR signaling in ECs and/or in IAHCs regulates the numbers of LMPs and HSCs.


Subject(s)
Embryo, Mammalian/metabolism , Hematopoietic Stem Cells/metabolism , Myeloid Differentiation Factor 88/metabolism , Signal Transduction , Animals , Cell Differentiation , Core Binding Factor Alpha 2 Subunit/metabolism , Embryo, Mammalian/cytology , Endothelial Cells/cytology , Endothelial Cells/metabolism , Hemangioblasts/cytology , Hemangioblasts/metabolism , Hematopoietic Stem Cells/cytology , Immunity, Innate , Mice , Mice, Inbred C57BL , Mice, Knockout , Myeloid Cells/cytology , Myeloid Cells/metabolism , Myeloid Differentiation Factor 88/deficiency , Myeloid Differentiation Factor 88/genetics , Toll-Like Receptor 4/deficiency , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , Toll-Like Receptors/metabolism
9.
Genes Dev ; 35(21-22): 1475-1489, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34675061

ABSTRACT

Hematopoietic stem and progenitor cells (HSPCs) are generated de novo in the embryo from hemogenic endothelial cells (HECs) via an endothelial-to-hematopoietic transition (EHT) that requires the transcription factor RUNX1. Ectopic expression of RUNX1 alone can efficiently promote EHT and HSPC formation from embryonic endothelial cells (ECs), but less efficiently from fetal or adult ECs. Efficiency correlated with baseline accessibility of TGFß-related genes associated with endothelial-to-mesenchymal transition (EndoMT) and participation of AP-1 and SMAD2/3 to initiate further chromatin remodeling along with RUNX1 at these sites. Activation of TGFß signaling improved the efficiency with which RUNX1 specified fetal ECs as HECs. Thus, the ability of RUNX1 to promote EHT depends on its ability to recruit the TGFß signaling effectors AP-1 and SMAD2/3, which in turn is determined by the changing chromatin landscape in embryonic versus fetal ECs. This work provides insight into regulation of EndoMT and EHT that will guide reprogramming efforts for clinical applications.


Subject(s)
Hemangioblasts , Cell Differentiation/genetics , Chromatin/metabolism , Core Binding Factor Alpha 2 Subunit/genetics , Core Binding Factor Alpha 2 Subunit/metabolism , Fetus , Hemangioblasts/metabolism , Hematopoiesis/genetics , Hematopoietic Stem Cells , Humans , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta1
10.
Mol Cell ; 81(11): 2332-2348.e9, 2021 06 03.
Article in English | MEDLINE | ID: mdl-33974912

ABSTRACT

Meningioma-1 (MN1) overexpression in AML is associated with poor prognosis, and forced expression of MN1 induces leukemia in mice. We sought to determine how MN1 causes AML. We found that overexpression of MN1 can be induced by translocations that result in hijacking of a downstream enhancer. Structure predictions revealed that the entire MN1 coding frame is disordered. We identified the myeloid progenitor-specific BAF complex as the key interaction partner of MN1. MN1 over-stabilizes BAF on enhancer chromatin, a function directly linked to the presence of a long polyQ-stretch within MN1. BAF over-stabilization at binding sites of transcription factors regulating a hematopoietic stem/progenitor program prevents the developmentally appropriate decommissioning of these enhancers and results in impaired myeloid differentiation and leukemia. Beyond AML, our data detail how the overexpression of a polyQ protein, in the absence of any coding sequence mutation, can be sufficient to cause malignant transformation.


Subject(s)
Carcinogenesis/genetics , DNA Helicases/genetics , Intrinsically Disordered Proteins/genetics , Leukemia, Myeloid, Acute/genetics , Nuclear Proteins/genetics , Trans-Activators/genetics , Transcription Factors/genetics , Tumor Suppressor Proteins/genetics , Animals , Base Sequence , Carcinogenesis/metabolism , Carcinogenesis/pathology , Cell Line, Tumor , Chromatin/genetics , Chromatin/metabolism , Chromatin/pathology , DNA Helicases/metabolism , Enhancer Elements, Genetic , Female , Gene Expression Regulation, Leukemic , Gene Regulatory Networks , Humans , Intrinsically Disordered Proteins/metabolism , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/mortality , Leukemia, Myeloid, Acute/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Nuclear Proteins/metabolism , Peptides/genetics , Peptides/metabolism , Protein Interaction Mapping , Protein Stability , Protein Transport , Signal Transduction , Survival Analysis , Trans-Activators/metabolism , Transcription Factors/metabolism , Tumor Suppressor Proteins/metabolism
11.
Blood ; 137(19): 2662-2675, 2021 05 13.
Article in English | MEDLINE | ID: mdl-33569577

ABSTRACT

Patients with familial platelet disorder with a predisposition to myeloid malignancy (FPDMM) harbor germline monoallelic mutations in a key hematopoietic transcription factor, RUNX-1. Previous studies of FPDMM have focused on megakaryocyte (Mk) differentiation and platelet production and signaling. However, the effects of RUNX-1 haploinsufficiency on hematopoietic progenitor cells (HPCs) and subsequent megakaryopoiesis remains incomplete. We studied induced pluripotent stem cell (iPSC)-derived HPCs (iHPCs) and Mks (iMks) from both patient-derived lines and a wild-type (WT) line modified to be RUNX-1 haploinsufficient (RUNX-1+/-), each compared with their isogenic WT control. All RUNX-1+/- lines showed decreased iMk yield and depletion of an Mk-biased iHPC subpopulation. To investigate global and local gene expression changes underlying this iHPC shift, single-cell RNA sequencing was performed on sorted FPDMM and control iHPCs. We defined several cell subpopulations in the Mk-biased iHPCs. Analyses of gene sets upregulated in FPDMM iHPCs indicated enrichment for response to stress, regulation of signal transduction, and immune signaling-related gene sets. Immunoblot analyses in FPDMM iMks were consistent with these findings, but also identified augmented baseline c-Jun N-terminal kinase (JNK) phosphorylation, known to be activated by transforming growth factor-ß1 (TGF-ß1) and cellular stressors. These findings were confirmed in adult human CD34+-derived stem and progenitor cells (HSPCs) transduced with lentiviral RUNX1 short hairpin RNA to mimic RUNX-1+/-. In both iHPCs and CD34+-derived HSPCs, targeted inhibitors of JNK and TGF-ß1 pathways corrected the megakaryopoietic defect. We propose that such intervention may correct the thrombocytopenia in patients with FPDMM.


Subject(s)
Core Binding Factor Alpha 2 Subunit/deficiency , Hematopoietic Stem Cells/pathology , Megakaryocytes/pathology , Neoplastic Syndromes, Hereditary/pathology , Adult , Base Sequence , Core Binding Factor Alpha 2 Subunit/genetics , Flow Cytometry , Haploinsufficiency , Humans , Immunophenotyping , Induced Pluripotent Stem Cells/cytology , MAP Kinase Signaling System , Neoplastic Syndromes, Hereditary/genetics , Platelet Glycoprotein GPIb-IX Complex/analysis , RNA, Small Interfering/genetics , Recombinant Proteins/metabolism , Signal Transduction , Single-Cell Analysis , Thrombopoiesis , Transforming Growth Factor beta1/physiology
12.
Cell ; 184(5): 1262-1280.e22, 2021 03 04.
Article in English | MEDLINE | ID: mdl-33636129

ABSTRACT

Improving effector activity of antigen-specific T cells is a major goal in cancer immunotherapy. Despite the identification of several effector T cell (TEFF)-driving transcription factors (TFs), the transcriptional coordination of TEFF biology remains poorly understood. We developed an in vivo T cell CRISPR screening platform and identified a key mechanism restraining TEFF biology through the ETS family TF, Fli1. Genetic deletion of Fli1 enhanced TEFF responses without compromising memory or exhaustion precursors. Fli1 restrained TEFF lineage differentiation by binding to cis-regulatory elements of effector-associated genes. Loss of Fli1 increased chromatin accessibility at ETS:RUNX motifs, allowing more efficient Runx3-driven TEFF biology. CD8+ T cells lacking Fli1 provided substantially better protection against multiple infections and tumors. These data indicate that Fli1 safeguards the developing CD8+ T cell transcriptional landscape from excessive ETS:RUNX-driven TEFF cell differentiation. Moreover, genetic deletion of Fli1 improves TEFF differentiation and protective immunity in infections and cancer.


Subject(s)
CD8-Positive T-Lymphocytes/cytology , Proto-Oncogene Protein c-fli-1/metabolism , Animals , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , CRISPR-Cas Systems , Cell Differentiation , Chronic Disease , Core Binding Factor Alpha 3 Subunit/metabolism , Epigenesis, Genetic , Gene Regulatory Networks , Infections/immunology , Mice , Neoplasms/immunology
13.
Proc Natl Acad Sci U S A ; 117(38): 23626-23635, 2020 09 22.
Article in English | MEDLINE | ID: mdl-32883883

ABSTRACT

Hematopoietic stem and progenitor cell (HSPC) formation and lineage differentiation involve gene expression programs orchestrated by transcription factors and epigenetic regulators. Genetic disruption of the chromatin remodeler chromodomain-helicase-DNA-binding protein 7 (CHD7) expanded phenotypic HSPCs, erythroid, and myeloid lineages in zebrafish and mouse embryos. CHD7 acts to suppress hematopoietic differentiation. Binding motifs for RUNX and other hematopoietic transcription factors are enriched at sites occupied by CHD7, and decreased RUNX1 occupancy correlated with loss of CHD7 localization. CHD7 physically interacts with RUNX1 and suppresses RUNX1-induced expansion of HSPCs during development through modulation of RUNX1 activity. Consequently, the RUNX1:CHD7 axis provides proper timing and function of HSPCs as they emerge during hematopoietic development or mature in adults, representing a distinct and evolutionarily conserved control mechanism to ensure accurate hematopoietic lineage differentiation.


Subject(s)
Core Binding Factor Alpha 2 Subunit , DNA-Binding Proteins , Hematopoiesis , Animals , Cell Differentiation , Cell Line , Core Binding Factor Alpha 2 Subunit/chemistry , Core Binding Factor Alpha 2 Subunit/genetics , Core Binding Factor Alpha 2 Subunit/metabolism , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Female , Hematopoietic Stem Cells , Humans , Male , Mice , Spleen/cytology , Zebrafish
14.
Genes Dev ; 34(13-14): 950-964, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32499402

ABSTRACT

Hematopoietic stem cell (HSC) ontogeny is accompanied by dynamic changes in gene regulatory networks. We performed RNA-seq and histone mark ChIP-seq to define the transcriptomes and epigenomes of cells representing key developmental stages of HSC ontogeny in mice. The five populations analyzed were embryonic day 10.5 (E10.5) endothelium and hemogenic endothelium from the major arteries, an enriched population of prehematopoietic stem cells (pre-HSCs), fetal liver HSCs, and adult bone marrow HSCs. Using epigenetic signatures, we identified enhancers for each developmental stage. Only 12% of enhancers are primed, and 78% are active, suggesting the vast majority of enhancers are established de novo without prior priming in earlier stages. We constructed developmental stage-specific transcriptional regulatory networks by linking enhancers and predicted bound transcription factors to their target promoters using a novel computational algorithm, target inference via physical connection (TIPC). TIPC predicted known transcriptional regulators for the endothelial-to-hematopoietic transition, validating our overall approach, and identified putative novel transcription factors, including the broadly expressed transcription factors SP3 and MAZ. Finally, we validated a role for SP3 and MAZ in the formation of hemogenic endothelium. Our data and computational analyses provide a useful resource for uncovering regulators of HSC formation.


Subject(s)
Gene Expression Regulation, Developmental/genetics , Gene Regulatory Networks/genetics , Hematopoiesis/genetics , Hematopoietic Stem Cells/cytology , Algorithms , Animals , DNA-Binding Proteins/metabolism , Enhancer Elements, Genetic/genetics , Epigenesis, Genetic/genetics , Gene Editing , Mice , Sp3 Transcription Factor/metabolism , Transcription Factors/metabolism , Transcriptome
16.
Blood ; 136(7): 845-856, 2020 08 13.
Article in English | MEDLINE | ID: mdl-32392346

ABSTRACT

Hematopoietic stem and progenitor cells (HSPCs) in the bone marrow are derived from a small population of hemogenic endothelial (HE) cells located in the major arteries of the mammalian embryo. HE cells undergo an endothelial to hematopoietic cell transition, giving rise to HSPCs that accumulate in intra-arterial clusters (IAC) before colonizing the fetal liver. To examine the cell and molecular transitions between endothelial (E), HE, and IAC cells, and the heterogeneity of HSPCs within IACs, we profiled ∼40 000 cells from the caudal arteries (dorsal aorta, umbilical, vitelline) of 9.5 days post coitus (dpc) to 11.5 dpc mouse embryos by single-cell RNA sequencing and single-cell assay for transposase-accessible chromatin sequencing. We identified a continuous developmental trajectory from E to HE to IAC cells, with identifiable intermediate stages. The intermediate stage most proximal to HE, which we term pre-HE, is characterized by increased accessibility of chromatin enriched for SOX, FOX, GATA, and SMAD motifs. A developmental bottleneck separates pre-HE from HE, with RUNX1 dosage regulating the efficiency of the pre-HE to HE transition. A distal candidate Runx1 enhancer exhibits high chromatin accessibility specifically in pre-HE cells at the bottleneck, but loses accessibility thereafter. Distinct developmental trajectories within IAC cells result in 2 populations of CD45+ HSPCs; an initial wave of lymphomyeloid-biased progenitors, followed by precursors of hematopoietic stem cells (pre-HSCs). This multiomics single-cell atlas significantly expands our understanding of pre-HSC ontogeny.


Subject(s)
Cell Differentiation , Endothelium/embryology , Hemangioblasts/physiology , Hematopoiesis/physiology , Hematopoietic Stem Cells/physiology , Animals , Cell Differentiation/genetics , Core Binding Factor Alpha 2 Subunit/physiology , Embryo, Mammalian , Endothelium/cytology , Endothelium/metabolism , Female , Gene Dosage/physiology , Gene Expression Regulation, Developmental , Hemangioblasts/cytology , Hematopoiesis/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Pregnancy , RNA-Seq/methods
17.
Blood Adv ; 4(6): 1145-1158, 2020 03 24.
Article in English | MEDLINE | ID: mdl-32208490

ABSTRACT

RUNX1 is frequently mutated in myeloid and lymphoid malignancies. It has been shown to negatively regulate Toll-like receptor 4 (TLR4) signaling through nuclear factor κB (NF-κB) in lung epithelial cells. Here we show that RUNX1 regulates TLR1/2 and TLR4 signaling and inflammatory cytokine production by neutrophils. Hematopoietic-specific RUNX1 loss increased the production of proinflammatory mediators, including tumor necrosis factor-α (TNF-α), by bone marrow neutrophils in response to TLR1/2 and TLR4 agonists. Hematopoietic RUNX1 loss also resulted in profound damage to the lung parenchyma following inhalation of the TLR4 ligand lipopolysaccharide (LPS). However, neutrophils with neutrophil-specific RUNX1 loss lacked the inflammatory phenotype caused by pan-hematopoietic RUNX1 loss, indicating that dysregulated TLR4 signaling is not due to loss of RUNX1 in neutrophils per se. Rather, single-cell RNA sequencing indicates the dysregulation originates in a neutrophil precursor. Enhanced inflammatory cytokine production by neutrophils following pan-hematopoietic RUNX1 loss correlated with increased degradation of the inhibitor of NF-κB signaling, and RUNX1-deficient neutrophils displayed broad transcriptional upregulation of many of the core components of the TLR4 signaling pathway. Hence, early, pan-hematopoietic RUNX1 loss de-represses an innate immune signaling transcriptional program that is maintained in terminally differentiated neutrophils, resulting in their hyperinflammatory state. We hypothesize that inflammatory cytokine production by neutrophils may contribute to leukemia associated with inherited RUNX1 mutations.


Subject(s)
Core Binding Factor Alpha 2 Subunit , Neutrophils , Core Binding Factor Alpha 2 Subunit/genetics , NF-kappa B/metabolism , Neutrophils/metabolism , Signal Transduction , Toll-Like Receptors
18.
Stem Cell Reports ; 14(2): 285-299, 2020 02 11.
Article in English | MEDLINE | ID: mdl-31951812

ABSTRACT

The Mixed Lineage Leukemia (MLL1, KMT2A) gene is critical for development and maintenance of hematopoietic stem cells (HSCs), however, whether this protein is limiting for HSC development is unknown due to lack of physiologic model systems. Here, we develop an MLL1-inducible embryonic stem cell (ESC) system and show that induction of wild-type MLL1 during ESC differentiation selectively increases hematopoietic potential from a transitional c-Kit+/Cd41+ population in the embryoid body and also at sites of hematopoiesis in embryos. Single-cell sequencing analysis illustrates inherent heterogeneity of the c-Kit+/Cd41+ population and demonstrates that MLL1 induction shifts its composition toward multilineage hematopoietic identities. Surprisingly, this does not occur through increasing Hox or other canonical MLL1 targets but through an enhanced Rac/Rho/integrin signaling state, which increases responsiveness to Vla4 ligands and enhances hematopoietic commitment. Together, our data implicate a Rac/Rho/integrin signaling axis in the endothelial to hematopoietic transition and demonstrate that MLL1 actives this axis.


Subject(s)
Hematopoiesis , Histone-Lysine N-Methyltransferase/metabolism , Integrins/metabolism , Mouse Embryonic Stem Cells/metabolism , Myeloid-Lymphoid Leukemia Protein/metabolism , Signal Transduction , rac GTP-Binding Proteins/metabolism , rho GTP-Binding Proteins/metabolism , Animals , Biomarkers/metabolism , Cell Adhesion , Cell Differentiation , Colony-Forming Units Assay , Embryoid Bodies/cytology , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Humans , Mesoderm/cytology , Mice
19.
Cell Rep ; 29(12): 4200-4211.e7, 2019 12 17.
Article in English | MEDLINE | ID: mdl-31851943

ABSTRACT

Fetal hematopoietic stem cells (HSCs) undergo a developmental switch to become adult HSCs with distinct functional properties. To better understand the molecular mechanisms underlying the developmental switch, we have conducted deep sequencing of the 3D genome, epigenome, and transcriptome of fetal and adult HSCs in mouse. We find that chromosomal compartments and topologically associating domains (TADs) are largely conserved between fetal and adult HSCs. However, there is a global trend of increased compartmentalization and TAD boundary strength in adult HSCs. In contrast, intra-TAD chromatin interactions are much more dynamic and widespread, involving over a thousand gene promoters and distal enhancers. These developmental-stage-specific enhancer-promoter interactions are mediated by different sets of transcription factors, such as TCF3 and MAFB in fetal HSCs, versus NR4A1 and GATA3 in adult HSCs. Loss-of-function studies of TCF3 confirm the role of TCF3 in mediating condition-specific enhancer-promoter interactions and gene regulation in fetal HSCs.


Subject(s)
Adult Stem Cells/cytology , Adult Stem Cells/metabolism , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Animals , Enhancer Elements, Genetic/genetics , Female , GATA3 Transcription Factor/genetics , GATA3 Transcription Factor/metabolism , Male , Mice , Nuclear Receptor Subfamily 4, Group A, Member 1/genetics , Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism , Promoter Regions, Genetic/genetics
20.
Blood Adv ; 3(20): 2962-2979, 2019 10 22.
Article in English | MEDLINE | ID: mdl-31648317

ABSTRACT

Standardized variant curation is essential for clinical care recommendations for patients with inherited disorders. Clinical Genome Resource (ClinGen) variant curation expert panels are developing disease-associated gene specifications using the 2015 American College of Medical Genetics and Genomics (ACMG) and Association for Molecular Pathology (AMP) guidelines to reduce curation discrepancies. The ClinGen Myeloid Malignancy Variant Curation Expert Panel (MM-VCEP) was created collaboratively between the American Society of Hematology and ClinGen to perform gene- and disease-specific modifications for inherited myeloid malignancies. The MM-VCEP began optimizing ACMG/AMP rules for RUNX1 because many germline variants have been described in patients with familial platelet disorder with a predisposition to acute myeloid leukemia, characterized by thrombocytopenia, platelet functional/ultrastructural defects, and a predisposition to hematologic malignancies. The 28 ACMG/AMP codes were tailored for RUNX1 variants by modifying gene/disease specifications, incorporating strength adjustments of existing rules, or both. Key specifications included calculation of minor allele frequency thresholds, formulating a semi-quantitative approach to counting multiple independent variant occurrences, identifying functional domains and mutational hotspots, establishing functional assay thresholds, and characterizing phenotype-specific guidelines. Preliminary rules were tested by using a pilot set of 52 variants; among these, 50 were previously classified as benign/likely benign, pathogenic/likely pathogenic, variant of unknown significance (VUS), or conflicting interpretations (CONF) in ClinVar. The application of RUNX1-specific criteria resulted in a reduction in CONF and VUS variants by 33%, emphasizing the benefit of gene-specific criteria and sharing internal laboratory data.


Subject(s)
Core Binding Factor Alpha 2 Subunit/genetics , Genetic Variation , Germ-Line Mutation , Leukemia, Myeloid/diagnosis , Leukemia, Myeloid/genetics , Clinical Decision-Making , Disease Management , Genetic Association Studies , Genetic Predisposition to Disease , Genetic Testing , Genomics/methods , Humans , Phenotype , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...