Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
MAbs ; 14(1): 2133666, 2022.
Article in English | MEDLINE | ID: mdl-36253351

ABSTRACT

The intense international focus on the COVID-19 pandemic has provided a unique opportunity to use a wide array of novel tools to carry out scientific studies on the SARS-CoV-2 virus. The value of these comparative studies extends far beyond their consequences for SARS-CoV-2, providing broad implications for health-related science. Here we specifically discuss the impacts of these comparisons on advances in vaccines, the analysis of host humoral immunity, and antibody discovery. As an extension, we also discuss potential synergies between these areas.Abbreviations: CoVIC: The Coronavirus Immunotherapeutic Consortium; EUA: Emergency Use Authorization.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , COVID-19/epidemiology , Humans , Immunity, Humoral , Pandemics/prevention & control
2.
MAbs ; 14(1): 2115200, 2022.
Article in English | MEDLINE | ID: mdl-36068722

ABSTRACT

ABBREVIATIONS: CDR: complementarity determining region; FACS: fluorescence-activated cell sorting; ka: association rate; kd: dissociation rate; KD: dissociation constant; scFv: single-chain variable fragment; SPR: surface plasmon resonance.


Subject(s)
Single-Chain Antibodies , Antibody Affinity , Complementarity Determining Regions , Surface Plasmon Resonance
3.
Mol Ther ; 29(3): 1028-1046, 2021 03 03.
Article in English | MEDLINE | ID: mdl-33248247

ABSTRACT

Recombinant adeno-associated virus (rAAV) vectors have the unique ability to promote targeted integration of transgenes via homologous recombination at specified genomic sites, reaching frequencies of 0.1%-1%. We studied genomic parameters that influence targeting efficiencies on a large scale. To do this, we generated more than 1,000 engineered, doxycycline-inducible target sites in the human HAP1 cell line and infected this polyclonal population with a library of AAV-DJ targeting vectors, with each carrying a unique barcode. The heterogeneity of barcode integration at each target site provided an assessment of targeting efficiency at that locus. We compared targeting efficiency with and without target site transcription for identical chromosomal positions. Targeting efficiency was enhanced by target site transcription, while chromatin accessibility was associated with an increased likelihood of targeting. ChromHMM chromatin states characterizing transcription and enhancers in wild-type K562 cells were also associated with increased AAV-HR efficiency with and without target site transcription, respectively. Furthermore, the amenability of a site to targeting was influenced by the endogenous transcriptional level of intersecting genes. These results define important parameters that may not only assist in designing optimal targeting vectors for genome editing, but also provide new insights into the mechanism of AAV-mediated homologous recombination.


Subject(s)
Chromatin/genetics , Dependovirus/genetics , Gene Targeting/methods , Gene Transfer Techniques/statistics & numerical data , Genetic Vectors/genetics , Homologous Recombination , Transgenes , Genetic Vectors/administration & dosage , Humans , K562 Cells
4.
Nucleic Acids Res ; 44(8): e76, 2016 05 05.
Article in English | MEDLINE | ID: mdl-26762978

ABSTRACT

The CRISPR/Cas9 system facilitates precise DNA modifications by generating RNA-guided blunt-ended double-strand breaks. We demonstrate that guide RNA pairs generate deletions that are repaired with a high level of precision by non-homologous end-joining in mammalian cells. We present a method called knock-in blunt ligation for exploiting these breaks to insert exogenous PCR-generated sequences in a homology-independent manner without loss of additional nucleotides. This method is useful for making precise additions to the genome such as insertions of marker gene cassettes or functional elements, without the need for homology arms. We successfully utilized this method in human and mouse cells to insert fluorescent protein cassettes into various loci, with efficiencies up to 36% in HEK293 cells without selection. We also created versions of Cas9 fused to the FKBP12-L106P destabilization domain in an effort to improve Cas9 performance. Our in vivo blunt-end cloning method and destabilization-domain-fused Cas9 variant increase the repertoire of precision genome engineering approaches.


Subject(s)
CRISPR-Associated Proteins/genetics , CRISPR-Cas Systems/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , DNA End-Joining Repair/genetics , Genetic Engineering/methods , Animals , Cell Line , DNA Breaks, Double-Stranded , Genome/genetics , HEK293 Cells , Humans , Mice , RNA Editing/genetics , RNA, Guide, Kinetoplastida/genetics
5.
Genetics ; 196(4): 951-60, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24451596

ABSTRACT

The ability to distinguish cells and tissues of interest is critical for understanding their biological importance. In genetic model organisms, a prominent approach for discerning particular cells or tissues from others is the use of cell or tissue-specific enhancers to drive fluorescent reporters. This approach, however, is often limited by the brightness of the fluorescent reporter. To augment the ability to visualize cells or tissues of interest in Drosophila melanogaster, homo-hexameric GFP and mCherry reporters were developed for the GAL4, Q, and LexA transcription systems and functionally validated in vivo. The GFP and mCherry homo-hexameric fusion proteins exhibited significantly enhanced fluorescence as compared to monomeric fluorescent reporters and could be visualized by direct fluorescence throughout the cytoplasm of neurons, including the fine processes of axons and dendrites. These high-sensitivity fluorescent reporters of cell morphology can be utilized for a variety of purposes, especially facilitating fluorescence-based genetic screens for cell morphology phenotypes. These results suggest that the strategy of fusing monomeric fluorescent proteins in tandem to enhance brightness should be generalizable to other fluorescent proteins and other genetic model organisms.


Subject(s)
Cloning, Molecular/methods , Drosophila melanogaster/genetics , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Recombinant Fusion Proteins/analysis , Animals , Animals, Genetically Modified , Axons/ultrastructure , Dendrites/ultrastructure , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Reproducibility of Results , Tandem Repeat Sequences , Transcription Factors/genetics , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL