Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cells ; 12(14)2023 07 22.
Article in English | MEDLINE | ID: mdl-37508576

ABSTRACT

Stem cell-based therapies are promising tools for regenerative medicine and require bulk numbers of high-quality cells. Currently, cells are produced on demand and have a limited shelf-life as conventional cryopreservation is primarily designed for stock keeping. We present a study on bulk cryopreservation of the human iPSC lines UKKi011-A and BIONi010-C-41. By increasing cell concentration and volume, compared to conventional cryopreservation routines in cryo vials, one billion cells were frozen in 50 mL cryo bags. Upon thawing, the cells were immediately seeded in scalable suspension-based bioreactors for expansion to assess the stemness maintenance and for neural differentiation to assess their differentiation potential on the gene and protein levels. Both the conventional and bulk cryo approach show comparative results regarding viability and aggregation upon thawing and bioreactor inoculation. Reduced performance compared to the non-frozen control was compensated within 3 days regarding biomass yield. Stemness was maintained upon thawing in expansion. In neural differentiation, a delay of the neural marker expression on day 4 was compensated at day 9. We conclude that cryopreservation in cryo bags, using high cell concentrations and volumes, does not alter the cells' fate and is a suitable technology to avoid pre-cultivation and enable time- and cost-efficient therapeutic approaches with bulk cell numbers.


Subject(s)
Induced Pluripotent Stem Cells , Humans , Induced Pluripotent Stem Cells/metabolism , Cell Culture Techniques/methods , Cell Differentiation , Cryopreservation/methods , Bioreactors , Suspensions
2.
Cell Mol Life Sci ; 80(5): 127, 2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37081190

ABSTRACT

Hyperexcitability is associated with neuronal dysfunction, cellular death, and consequently neurodegeneration. Redox disbalance can contribute to hyperexcitation and increased reactive oxygen species (ROS) levels are observed in various neurological diseases. NOX4 is an NADPH oxidase known to produce ROS and might have a regulating function during oxidative stress. We, therefore, aimed to determine the role of NOX4 on neuronal firing, hyperexcitability, and hyperexcitability-induced changes in neural network function. Using a multidimensional approach of an in vivo model of hyperexcitability, proteomic analysis, and cellular function analysis of ROS, mitochondrial integrity, and calcium levels, we demonstrate that NOX4 is neuroprotective by regulating ROS and calcium homeostasis and thereby preventing hyperexcitability and consequently neuronal death. These results implicate NOX4 as a potential redox regulator that is beneficial in hyperexcitability and thereby might have an important role in neurodegeneration.


Subject(s)
Calcium , Proteomics , Humans , NADPH Oxidase 4 , NADPH Oxidases/metabolism , Oxidative Stress , Reactive Oxygen Species
3.
Redox Biol ; 59: 102597, 2023 02.
Article in English | MEDLINE | ID: mdl-36599286

ABSTRACT

Tauopathies are a major type of proteinopathies underlying neurodegenerative diseases. Mutations in the tau-encoding MAPT-gene lead to hereditary cases of frontotemporal lobar degeneration (FTLD)-tau, which span a wide phenotypic and pathological spectrum. Some of these mutations, such as the N279K mutation, result in a shift of the physiological 3R/4R ratio towards the more aggregation prone 4R isoform. Other mutations such as V337M cause a decrease in the in vitro affinity of tau to microtubules and a reduced ability to promote microtubule assembly. Whether both mutations address similar downstream signalling cascades remains unclear but is important for potential rescue strategies. Here, we developed a novel and optimised forward programming protocol for the rapid and highly efficient production of pure cultures of glutamatergic cortical neurons from hiPSCs. We apply this protocol to delineate mechanisms of neurodegeneration in an FTLD-tau hiPSC-model consisting of MAPTN279K- or MAPTV337M-mutants and wild-type or isogenic controls. The resulting cortical neurons express MAPT-genotype-dependent dominant proteome clusters regulating apoptosis, ROS homeostasis and mitochondrial function. Related pathways are significantly upregulated in MAPTN279K neurons but not in MAPTV337M neurons or controls. Live cell imaging demonstrates that both MAPT mutations affect excitability of membranes as reflected in spontaneous and stimulus evoked calcium signals when compared to controls, albeit more pronounced in MAPTN279K neurons. These spontaneous calcium oscillations in MAPTN279K neurons triggered mitochondrial hyperpolarisation and fission leading to mitochondrial ROS production, but also ROS production through NOX2 acting together to induce cell death. Importantly, we found that these mechanisms are MAPT mutation-specific and were observed in MAPTN279K neurons, but not in MAPTV337M neurons, supporting a pathological role of the 4R tau isoform in redox disbalance and highlighting MAPT-mutation specific clinicopathological-genetic correlations, which may inform rescue strategies in different MAPT mutations.


Subject(s)
Frontotemporal Dementia , Frontotemporal Lobar Degeneration , Humans , Reactive Oxygen Species/metabolism , Frontotemporal Dementia/genetics , tau Proteins/genetics , tau Proteins/metabolism , Frontotemporal Lobar Degeneration/genetics , Frontotemporal Lobar Degeneration/metabolism , Frontotemporal Lobar Degeneration/pathology , Neurons/metabolism , Mutation , Genotype , Protein Isoforms/metabolism
4.
Proc Natl Acad Sci U S A ; 119(43): e2123476119, 2022 10 25.
Article in English | MEDLINE | ID: mdl-36251998

ABSTRACT

Microglia, the resident immune cells of the central nervous system (CNS), are derived from yolk-sac macrophages that populate the developing CNS during early embryonic development. Once established, the microglia population is self-maintained throughout life by local proliferation. As a scalable source of microglia-like cells (MGLs), we here present a forward programming protocol for their generation from human pluripotent stem cells (hPSCs). The transient overexpression of PU.1 and C/EBPß in hPSCs led to a homogenous population of mature microglia within 16 d. MGLs met microglia characteristics on a morphological, transcriptional, and functional level. MGLs facilitated the investigation of a human tauopathy model in cortical neuron-microglia cocultures, revealing a secondary dystrophic microglia phenotype. Single-cell RNA sequencing of microglia integrated into hPSC-derived cortical brain organoids demonstrated a shift of microglia signatures toward a more-developmental in vivo-like phenotype, inducing intercellular interactions promoting neurogenesis and arborization. Taken together, our microglia forward programming platform represents a tool for both reductionist studies in monocultures and complex coculture systems, including 3D brain organoids for the study of cellular interactions in healthy or diseased environments.


Subject(s)
Microglia , Pluripotent Stem Cells , Cell Differentiation/genetics , Central Nervous System , Humans , Macrophages , Neurons
5.
Mol Neurodegener ; 14(1): 46, 2019 12 19.
Article in English | MEDLINE | ID: mdl-31856864

ABSTRACT

Microglia play an essential role for central nervous system (CNS) development and homeostasis and have been implicated in the onset, progression, and clearance of numerous diseases affecting the CNS. Previous in vitro research on human microglia was restricted to post-mortem brain tissue-derived microglia, with limited availability and lack of scalability. Recently, the first protocols for the generation of microglia from human pluripotent stem cells have become available, thus enabling the implementation of powerful platforms for disease modeling, drug testing, and studies on cell transplantation. Here we give a detailed and comprehensive overview of the protocols available for generating microglia from human pluripotent stem cells, highlighting the advantages, drawbacks, and operability and placing them into the context of current knowledge of human embryonic development. We review novel insights into microglia biology and the role of microglia in neurological diseases as drawn from the new methods and provide an outlook for future lines of research involving human pluripotent stem cell-derived microglia.


Subject(s)
Cell Differentiation/physiology , Induced Pluripotent Stem Cells/cytology , Microglia/metabolism , Neurons/cytology , Pluripotent Stem Cells/cytology , Cell Lineage/physiology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...