Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Diagnostics (Basel) ; 11(11)2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34829461

ABSTRACT

To evaluate the reader's diagnostic performance against the ground truth with and without the help of a novel content-based image retrieval system (CBIR) that retrieves images with similar CT patterns from a database of 79 different interstitial lung diseases. We evaluated three novice readers' and three resident physicians' (with at least three years of experience) diagnostic performance evaluating 50 different CTs featuring 10 different patterns (e.g., honeycombing, tree-in bud, ground glass, bronchiectasis, etc.) and 24 different diseases (sarcoidosis, UIP, NSIP, Aspergillosis, COVID-19 pneumonia etc.). The participants read the cases first without assistance (and without feedback regarding correctness), and with a 2-month interval in a random order with the assistance of the novel CBIR. To invoke the CBIR, a ROI is placed into the pathologic pattern by the reader and the system retrieves diseases with similar patterns. To further narrow the differential diagnosis, the readers can consult an integrated textbook and have the possibility of selecting high-level semantic features representing clinical information (chronic, infectious, smoking status, etc.). We analyzed readers' accuracy without and with CBIR assistance and further tested the hypothesis that the CBIR would help to improve diagnostic performance utilizing Wilcoxon signed rank test. The novice readers demonstrated an unassisted accuracy of 18/28/44%, and an assisted accuracy of 84/82/90%, respectively. The resident physicians demonstrated an unassisted accuracy of 56/56/70%, and an assisted accuracy of 94/90/96%, respectively. For each reader, as well as overall, Sign test demonstrated statistically significant (p < 0.01) difference between the unassisted and the assisted reads. For students and physicians, Chi²-test and Mann-Whitney-U test demonstrated statistically significant (p < 0.01) difference for unassisted reads and statistically insignificant (p > 0.01) difference for assisted reads. The evaluated CBIR relying on pattern analysis and featuring the option to filter the results of the CBIR by predominant characteristics of the diseases via selecting high-level semantic features helped to drastically improve novices' and resident physicians' accuracy in diagnosing interstitial lung diseases in CT.

2.
Int J Radiat Oncol Biol Phys ; 102(4): 792-800, 2018 11 15.
Article in English | MEDLINE | ID: mdl-29966724

ABSTRACT

PURPOSE: To investigate advanced multimodal methods for pseudo-computed tomography (CT) generation from standard magnetic resonance imaging sequences and to validate the results by intensity-modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) plans. We present 2 novel methods that employ key techniques to enhance pseudo-CTs and investigate the effect on image quality and applicability for IMRT and VMAT planning. MATERIALS AND METHODS: The data set contains CT and magnetic resonance image scans from 15 patients who underwent cranial radiation therapy. For each patient, pseudo-CTs of the head were generated with a patch-based and a voxel-based algorithm. The accuracy of the pseudo-CTs in comparison to clinical CTs was evaluated by mean absolute error, bias, and the Dice coefficient (of bone). IMRT and VMAT plans were created for each patient. Dose distributions were calculated with both the pseudo-CT and the clinical CT scans and compared by gamma tests, dose-volume histograms, and isocenter doses. RESULTS: The generated pseudo-CTs exhibited average mean absolute errors of 118.7 ± 10.4 HU for the voxel-based algorithm and 73.0 ± 6.4 HU for the patch-based algorithm. The dose calculations were in good agreement and showed gamma test (2 mm, 2%) pass rates for both beam setups (IMRT and VMAT) of over 99% for 14 patients and over 98% for 1 patient. CONCLUSIONS: We showed that the key techniques of our 2 novel algorithms advance the quality of pseudo-CT significantly and generate very competitive pseudo-CTs compared with previously published methods. This quality was confirmed by low dose error in comparison to the ground-truth CT. With the achieved level of accuracy, our patch-based algorithm especially is a candidate for clinical routine use in IMRT and VMAT planning.


Subject(s)
Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Tomography, X-Ray Computed/methods , Algorithms , Humans , Magnetic Resonance Imaging/methods , Radiotherapy Dosage
3.
Acta Oncol ; 57(11): 1521-1531, 2018 Nov.
Article in English | MEDLINE | ID: mdl-29842815

ABSTRACT

BACKGROUND: In radiotherapy, MR imaging is only used because it has significantly better soft tissue contrast than CT, but it lacks electron density information needed for dose calculation. This work assesses the feasibility of using pseudo-CT (pCT) generated from T1w/T2w MR for proton treatment planning, where proton range comparisons are performed between standard CT and pCT. MATERIAL AND METHODS: MR and CT data from 14 glioblastoma patients were used in this study. The pCT was generated by using conversion libraries obtained from tissue segmentation and anatomical regioning of the T1w/T2w MR. For each patient, a plan consisting of three 18 Gy beams was designed on the pCT, for a total of 42 analyzed beams. The plan was then transferred onto the CT that represented the ground truth. Range shift (RS) between pCT and CT was computed at R80 over 10 slices. The acceptance threshold for RS was according to clinical guidelines of two institutions. A γ-index test was also performed on the total dose for each patient. RESULTS: Mean absolute error and bias for the pCT were 124 ± 10 and -16 ± 26 Hounsfield Units (HU), respectively. The median and interquartile range of RS was 0.5 and 1.4 mm, with highest absolute value being 4.4 mm. Of the 42 beams, 40 showed RS less than the clinical range margin. The two beams with larger RS were both in the cranio-caudal direction and had segmentation errors due to the partial volume effect, leading to misassignment of the HU. CONCLUSIONS: This study showed the feasibility of using T1w and T2w MRI to generate a pCT for proton therapy treatment, thus avoiding the use of a planning CT and allowing better target definition and possibilities for online adaptive therapies. Further improvements of the methodology are still required to improve the conversion from MRI intensities to HUs.


Subject(s)
Brain Neoplasms/diagnostic imaging , Glioblastoma/diagnostic imaging , Magnetic Resonance Imaging/methods , Proton Therapy/methods , Radiotherapy Planning, Computer-Assisted/methods , Algorithms , Brain Neoplasms/radiotherapy , Cohort Studies , Glioblastoma/radiotherapy , Humans , Image Processing, Computer-Assisted , Protons , Reproducibility of Results , Skull/diagnostic imaging , Tomography, X-Ray Computed/methods
SELECTION OF CITATIONS
SEARCH DETAIL