Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
Cell Rep ; 43(6): 114346, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38850534

ABSTRACT

Histopathological heterogeneity in the human pancreas is well documented; however, functional evidence at the tissue level is scarce. Herein, we investigate in situ glucose-stimulated islet and carbachol-stimulated acinar cell secretion across the pancreas head (PH), body (PB), and tail (PT) regions in donors without diabetes (ND; n = 15), positive for one islet autoantibody (1AAb+; n = 7), and with type 1 diabetes (T1D; <14 months duration, n = 5). Insulin, glucagon, pancreatic amylase, lipase, and trypsinogen secretion along with 3D tissue morphometrical features are comparable across regions in ND. In T1D, insulin secretion and beta-cell volume are significantly reduced within all regions, while glucagon and enzymes are unaltered. Beta-cell volume is lower despite normal insulin secretion in 1AAb+, resulting in increased volume-adjusted insulin secretion versus ND. Islet and acinar cell secretion in 1AAb+ are consistent across the PH, PB, and PT. This study supports low inter-regional variation in pancreas slice function and, potentially, increased metabolic demand in 1AAb+.


Subject(s)
Diabetes Mellitus, Type 1 , Insulin , Islets of Langerhans , Humans , Diabetes Mellitus, Type 1/pathology , Diabetes Mellitus, Type 1/metabolism , Islets of Langerhans/metabolism , Islets of Langerhans/pathology , Male , Insulin/metabolism , Female , Insulin Secretion/drug effects , Adult , Middle Aged , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/pathology , Acinar Cells/metabolism , Acinar Cells/pathology , Glucagon/metabolism , Glucose/metabolism , Autoantibodies/immunology , Amylases/metabolism
2.
bioRxiv ; 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38405840

ABSTRACT

Histopathological heterogeneity in human pancreas has been well documented; however, functional evidence at the tissue level is scarce. Herein we investigated in situ glucose-stimulated islet and carbachol-stimulated acinar cell secretion across the pancreas head (PH), body (PB), and tail (PT) regions in no diabetes (ND, n=15), single islet autoantibody-positive (1AAb+, n=7), and type 1 diabetes donors (T1D, <14 months duration, n=5). Insulin, glucagon, pancreatic amylase, lipase, and trypsinogen secretion along with 3D tissue morphometrical features were comparable across the regions in ND. In T1D, insulin secretion and beta-cell volume were significantly reduced within all regions, while glucagon and enzymes were unaltered. Beta-cell volume was lower despite normal insulin secretion in 1AAb+, resulting in increased volume-adjusted insulin secretion versus ND. Islet and acinar cell secretion in 1AAb+ were consistent across PH, PB and PT. This study supports low inter-regional variation in pancreas slice function and potentially, increased metabolic demand in 1AAb+.

3.
Exp Cell Res ; 434(1): 113868, 2024 01 01.
Article in English | MEDLINE | ID: mdl-38043722

ABSTRACT

OBJECTIVE: A wide range of cardiac diseases is associated with inflammation. "Inflamed" heart tissue is infiltrated with pro-inflammatory macrophages which extensively secrete matrix metalloproteinase 9 (MMP9), a regulator of extracellular matrix turnover. As MMP9 is released from macrophages in a latent form, it requires activation. The present study addresses the role of cardiomyocytes in the course of this activation process. METHODS AND RESULTS: In mono- and co-cultures of pro-inflammatory rat macrophages (bone marrow-derived and peritoneal) and cardiomyocytes (H9C2 cell line) gelatin zymography demonstrated that activated macrophages robustly secreted latent pro-MMP9, whereas cardiomyocytes could not produce the enzyme. Co-culturing of the two cell species was critical for pro-MMP9 activation and was also accompanied by processing of cardiomyocyte-secreted pro-MMP2. A cascade of pro-MMP9 activation was initiated on macrophage membrane with pro-MMP2 cleavage. Namely, pro-inflammatory macrophages expressed an active membrane type 1 MMP (MT1MMP), which activated pro-MMP2, which in turn converted pro-MMP9. Downregulation of MT1MMP in macrophages by siRNA abolished activation of both pro-MMP2 and pro-MMP9 in co-culture. In addition, both cell species secreted MMP13 as a further pro-MMP9 activator. In co-culture, activation of pro-MMP13 occurred on membranes of macrophages and was enhanced in presence of active MMP2. Using incubations with recombinant MMPs and isolated macrophage membranes, we demonstrated that while both MMP2 and MMP13 individually had the ability to activate pro-MMP9, their combined action provided a synergistic effect. CONCLUSION: Activation of pro-MMP9 in a co-culture of pro-inflammatory macrophages and cardiomyocytes was the result of a complex interaction of several MMPs on the cell membrane and in the extracellular space. Both cell types contributed critically to pro-MMP9 processing.


Subject(s)
Matrix Metalloproteinase 2 , Matrix Metalloproteinase 9 , Animals , Rats , Cells, Cultured , Coculture Techniques , Macrophages/metabolism , Matrix Metalloproteinase 13 , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/genetics , Matrix Metalloproteinase 9/metabolism , Myocytes, Cardiac/metabolism
4.
Diabetes ; 73(1): 11-22, 2024 01 01.
Article in English | MEDLINE | ID: mdl-38117999

ABSTRACT

Over the last two decades, increased availability of human pancreatic tissues has allowed for major expansions in our understanding of islet biology in health and disease. Indeed, studies of fixed and frozen pancreatic tissues, as well as efforts using viable isolated islets obtained from organ donors, have provided significant insights toward our understanding of diabetes. However, the procedures associated with islet isolation result in distressed cells that have been removed from any surrounding influence. The pancreas tissue slice technology was developed as an in situ approach to overcome certain limitations associated with studies on isolated islets or fixed tissue. In this Perspective, we discuss the value of this novel platform and review how pancreas tissue slices, within a short time, have been integrated in numerous studies of rodent and human islet research. We show that pancreas tissue slices allow for investigations in a less perturbed organ tissue environment, ranging from cellular processes, over peri-islet modulations, to tissue interactions. Finally, we discuss the considerations and limitations of this technology in its future applications. We believe the pancreas tissue slices will help bridge the gap between studies on isolated islets and cells to the systemic conditions by providing new insight into physiological and pathophysiological processes at the organ level. ARTICLE HIGHLIGHTS: Human pancreas tissue slices represent a novel platform to study human islet biology in close to physiological conditions. Complementary to established technologies, such as isolated islets, single cells, and histological sections, pancreas tissue slices help bridge our understanding of islet physiology and pathophysiology from single cell to intact organ. Diverse sources of viable human pancreas tissue, each with distinct characteristics to be considered, are available to use in tissue slices for the study of diabetes pathogenesis.


Subject(s)
Diabetes Mellitus , Islets of Langerhans Transplantation , Islets of Langerhans , Humans , Pancreas , Tissue Donors
5.
Antioxidants (Basel) ; 12(2)2023 Jan 27.
Article in English | MEDLINE | ID: mdl-36829839

ABSTRACT

As a major cause of morbidity and mortality globally, hypertension remains a serious threat to global public health. Despite the availability of many antihypertensive medications, several hypertensive individuals are resistant to standard treatments, and are unable to control their blood pressure. Regulation of the renin-angiotensin-aldosterone system (RAAS) controlling blood pressure, activation of the immune system triggering inflammation and production of reactive oxygen species, leading to oxidative stress and redox-sensitive signaling, have been implicated in the pathogenesis of hypertension. Thus, besides standard antihypertensive medications, which lower arterial pressure, antioxidant medications were tested to improve antihypertensive treatment. We review and discuss the role of oxidative stress in the pathophysiology of hypertension and the potential use of antioxidants in the management of hypertension and its associated organ damage.

6.
Nat Commun ; 13(1): 6255, 2022 10 21.
Article in English | MEDLINE | ID: mdl-36271049

ABSTRACT

Diabetes is a multifactorial disorder characterized by loss or dysfunction of pancreatic ß-cells. ß-cells are heterogeneous, exhibiting different glucose sensing, insulin secretion and gene expression. They communicate with other endocrine cell types via paracrine signals and between ß-cells via gap junctions. Here, we identify the importance of signaling between ß-cells via the extracellular signal WNT4. We show heterogeneity in Wnt4 expression, most strikingly in the postnatal maturation period, Wnt4-positive cells, being more mature while Wnt4-negative cells are more proliferative. Knock-out in adult ß-cells shows that WNT4 controls the activation of calcium signaling in response to a glucose challenge, as well as metabolic pathways converging to lower ATP/ADP ratios, thereby reducing insulin secretion. These results reveal that paracrine signaling between ß-cells is important in addition to gap junctions in controling insulin secretion. Together with previous reports of WNT4 up-regulation in obesity our observations suggest an adaptive insulin response coordinating ß-cells.


Subject(s)
Calcium Signaling , Insulins , Glucose/metabolism , Adenosine Triphosphate/metabolism , Insulins/metabolism , Adenosine Diphosphate/metabolism
7.
Cell Stem Cell ; 28(6): 1105-1124.e19, 2021 06 03.
Article in English | MEDLINE | ID: mdl-33915078

ABSTRACT

Personalized in vitro models for dysplasia and carcinogenesis in the pancreas have been constrained by insufficient differentiation of human pluripotent stem cells (hPSCs) into the exocrine pancreatic lineage. Here, we differentiate hPSCs into pancreatic duct-like organoids (PDLOs) with morphological, transcriptional, proteomic, and functional characteristics of human pancreatic ducts, further maturing upon transplantation into mice. PDLOs are generated from hPSCs inducibly expressing oncogenic GNAS, KRAS, or KRAS with genetic covariance of lost CDKN2A and from induced hPSCs derived from a McCune-Albright patient. Each oncogene causes a specific growth, structural, and molecular phenotype in vitro. While transplanted PDLOs with oncogenic KRAS alone form heterogenous dysplastic lesions or cancer, KRAS with CDKN2A loss develop dedifferentiated pancreatic ductal adenocarcinomas. In contrast, transplanted PDLOs with mutant GNAS lead to intraductal papillary mucinous neoplasia-like structures. Conclusively, PDLOs enable in vitro and in vivo studies of pancreatic plasticity, dysplasia, and cancer formation from a genetically defined background.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Pluripotent Stem Cells , Animals , Humans , Mice , Mutation , Organoids , Pancreatic Ducts , Pancreatic Neoplasms/genetics , Proteomics
8.
J Vis Exp ; (170)2021 04 12.
Article in English | MEDLINE | ID: mdl-33900291

ABSTRACT

Live pancreatic tissue slices allow for the study of islet physiology and function in the context of an intact islet microenvironment. Slices are prepared from live human and mouse pancreatic tissue embedded in agarose and cut using a vibratome. This method allows for the tissue to maintain viability and function in addition to preserving underlying pathologies such as type 1 (T1D) and type 2 diabetes (T2D). The slice method enables new directions in the study of the pancreas through the maintenance of the complex structures and various intercellular interactions that comprise the endocrine and exocrine tissues of the pancreas. This protocol demonstrates how to perform staining and time-lapse microscopy of live endogenous immune cells within pancreatic slices along with assessments of islet physiology. Further, this approach can be refined to discern immune cell populations specific for islet cell antigens using major histocompatibility complex-multimer reagents.


Subject(s)
Cell Communication , Diabetes Mellitus, Type 2/pathology , Immune System/metabolism , Islets of Langerhans/metabolism , Pancreas/physiology , Animals , Diabetes Mellitus, Type 2/immunology , Diabetes Mellitus, Type 2/metabolism , Immune System/cytology , Islets of Langerhans/cytology , Mice
9.
Am J Pathol ; 191(3): 454-462, 2021 03.
Article in English | MEDLINE | ID: mdl-33307036

ABSTRACT

Emerging data suggest that type 1 diabetes affects not only the ß-cell-containing islets of Langerhans, but also the surrounding exocrine compartment. Using digital pathology, machine learning algorithms were applied to high-resolution, whole-slide images of human pancreata to determine whether the tissue composition in individuals with or at risk for type 1 diabetes differs from those without diabetes. Transplant-grade pancreata from organ donors were evaluated from 16 nondiabetic autoantibody-negative controls, 8 nondiabetic autoantibody-positive subjects with increased type 1 diabetes risk, and 19 persons with type 1 diabetes (0 to 12 years' duration). HALO image analysis algorithms were implemented to compare architecture of the main pancreatic duct as well as cell size, density, and area of acinar, endocrine, ductal, and other nonendocrine, nonexocrine tissues. Type 1 diabetes was found to affect exocrine area, acinar cell density, and size, whereas the type of difference correlated with the presence or absence of insulin-positive cells remaining in the pancreas. These changes were not observed before disease onset, as indicated by modeling cross-sectional data from pancreata of autoantibody-positive subjects and those diagnosed with type 1 diabetes. These data provide novel insights into anatomic differences in type 1 diabetes pancreata and demonstrate that machine learning can be adapted for the evaluation of disease processes from cross-sectional data sets.


Subject(s)
Algorithms , Autoantibodies/immunology , Diabetes Mellitus, Type 1/pathology , Image Processing, Computer-Assisted/methods , Machine Learning , Pancreas/pathology , Adolescent , Autoantibodies/blood , Case-Control Studies , Diabetes Mellitus, Type 1/immunology , Diabetes Mellitus, Type 1/metabolism , Female , Humans , Insulin/analysis , Pancreas/immunology , Pancreas/metabolism , Tissue Donors
10.
Diabetes ; 69(11): 2246-2252, 2020 11.
Article in English | MEDLINE | ID: mdl-32843570

ABSTRACT

Glucagon-like peptide 1 receptor (GLP-1R) imaging with radiolabeled exendin has proven to be a powerful tool to quantify ß-cell mass (BCM) in vivo. As GLP-1R expression is thought to be influenced by glycemic control, we examined the effect of blood glucose (BG) levels on GLP-1R-mediated exendin uptake in both murine and human islets and its implications for BCM quantification. Periods of hyperglycemia significantly reduced exendin uptake in murine and human islets, which was paralleled by a reduction in GLP-1R expression. Detailed mapping of the tracer uptake and insulin and GLP-1R expression conclusively demonstrated that the observed reduction in tracer uptake directly correlates to GLP-1R expression levels. Importantly, the linear correlation between tracer uptake and ß-cell area was maintained in spite of the reduced GLP-1R expression levels. Subsequent normalization of BG levels restored absolute tracer uptake and GLP-1R expression in ß-cells and the observed loss in islet volume was halted. This manuscript emphasizes the potency of nuclear imaging techniques to monitor receptor regulation noninvasively. Our findings have significant implications for clinical practice, indicating that BG levels should be near-normalized for at least 3 weeks prior to GLP-1R agonist treatment or quantitative radiolabeled exendin imaging for BCM analysis.


Subject(s)
Blood Glucose , Glucagon-Like Peptide-1 Receptor/metabolism , Glucose/pharmacology , Islets of Langerhans/drug effects , Monitoring, Physiologic , Animals , Gene Expression Regulation/drug effects , Glucagon-Like Peptide-1 Receptor/genetics , Humans , Islets of Langerhans/metabolism , Male , Mice , Mice, SCID , Peptides/metabolism
11.
Nat Commun ; 11(1): 3265, 2020 06 29.
Article in English | MEDLINE | ID: mdl-32601271

ABSTRACT

The culture of live pancreatic tissue slices is a powerful tool for the interrogation of physiology and pathology in an in vitro setting that retains near-intact cytoarchitecture. However, current culture conditions for human pancreatic slices (HPSs) have only been tested for short-term applications, which are not permissive for the long-term, longitudinal study of pancreatic endocrine regeneration. Using a culture system designed to mimic the physiological oxygenation of the pancreas, we demonstrate high viability and preserved endocrine and exocrine function in HPS for at least 10 days after sectioning. This extended lifespan allowed us to dynamically lineage trace and quantify the formation of insulin-producing cells in HPS from both non-diabetic and type 2 diabetic donors. This technology is expected to be of great impact for the conduct of real-time regeneration/developmental studies in the human pancreas.


Subject(s)
Islets of Langerhans/cytology , Pancreas/cytology , Tissue Culture Techniques/methods , Animals , Humans , Longitudinal Studies , Mice , Models, Biological , Regeneration , Stem Cells/cytology
13.
Cell Rep ; 31(1): 107469, 2020 04 07.
Article in English | MEDLINE | ID: mdl-32268101

ABSTRACT

Type 2 diabetes is characterized by peripheral insulin resistance and insufficient insulin release from pancreatic islet ß cells. However, the role and sequence of ß cell dysfunction and mass loss for reduced insulin levels in type 2 diabetes pathogenesis are unclear. Here, we exploit freshly explanted pancreas specimens from metabolically phenotyped surgical patients using an in situ tissue slice technology. This approach allows assessment of ß cell volume and function within pancreas samples of metabolically stratified individuals. We show that, in tissue of pre-diabetic, impaired glucose-tolerant subjects, ß cell volume is unchanged, but function significantly deteriorates, exhibiting increased basal release and loss of first-phase insulin secretion. In individuals with type 2 diabetes, function within the sustained ß cell volume further declines. These results indicate that dysfunction of persisting ß cells is a key factor in the early development and progression of type 2 diabetes, representing a major target for diabetes prevention and therapy.


Subject(s)
Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Insulin-Secreting Cells/pathology , Aged , Blood Glucose/metabolism , Female , Glucose/metabolism , Humans , Insulin/metabolism , Insulin Resistance/physiology , Insulin Secretion/physiology , Insulin-Secreting Cells/metabolism , Islets of Langerhans/metabolism , Male , Middle Aged , Pancreas/metabolism
14.
JCI Insight ; 5(8)2020 04 23.
Article in English | MEDLINE | ID: mdl-32324170

ABSTRACT

In type 1 diabetes (T1D), autoimmune destruction of pancreatic ß cells leads to insulin deficiency and loss of glycemic control. However, knowledge about human pancreas pathophysiology in T1D remains incomplete. To address this limitation, we established a pancreas tissue slice platform of donor organs with and without diabetes, facilitating the first live cell studies of human pancreas in T1D pathogenesis to our knowledge. We show that pancreas tissue slices from organ donors allow thorough assessment of processes critical for disease development, including insulin secretion, ß cell physiology, endocrine cell morphology, and immune infiltration within the same donor organ. Using this approach, we compared detailed pathophysiological profiles for 4 pancreata from donors with T1D with 19 nondiabetic control donors. We demonstrate that ß cell loss, ß cell dysfunction, alterations of ß cell physiology, and islet infiltration contributed differently to individual cases of T1D, allowing insight into pathophysiology and heterogeneity of T1D pathogenesis. Thus, our study demonstrates that organ donor pancreas tissue slices represent a promising and potentially novel approach in the search for successful prevention and reversal strategies of T1D.


Subject(s)
Diabetes Mellitus, Type 1/physiopathology , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/pathology , Pancreas/physiopathology , Tissue Culture Techniques , Adolescent , Adult , Child , Child, Preschool , Female , Humans , Male , Tissue Donors , Young Adult
15.
Methods Mol Biol ; 2128: 149-157, 2020.
Article in English | MEDLINE | ID: mdl-32180192

ABSTRACT

Noninvasive in vivo imaging techniques are attractive tools to longitudinally study various aspects of islet of Langerhans physiology and pathophysiology. Unfortunately, most imaging modalities currently applicable for clinical use do not allow the comprehensive investigation of islet cell biology due to limitations in resolution and/or sensitivity, while high-resolution imaging technologies like laser scanning microscopy (LSM) lack the penetration depth to assess islets of Langerhans within the pancreas. Significant progress in this area was made by the combination of LSM with the anterior chamber of the mouse eye platform, utilizing the cornea as a natural body window to study cell physiology of transplanted islets of Langerhans. We here describe the transplantation and longitudinal in vivo imaging of islets of Langerhans in the anterior chamber of the mouse eye as a versatile tool to study different features of islet physiology in health and disease.


Subject(s)
Anterior Chamber/anatomy & histology , Islets of Langerhans Transplantation/diagnostic imaging , Islets of Langerhans Transplantation/methods , Microscopy, Confocal/methods , Animals , Anterior Chamber/transplantation , Anterior Chamber/ultrastructure , Disease Models, Animal , Islets of Langerhans/cytology , Islets of Langerhans/physiology , Islets of Langerhans Transplantation/instrumentation , Longitudinal Studies , Mice , Mice, Mutant Strains , Microscopy, Confocal/instrumentation , Transplantation, Heterotopic
16.
Methods Mol Biol ; 2128: 301-312, 2020.
Article in English | MEDLINE | ID: mdl-32180201

ABSTRACT

Studies on islet of Langerhans physiology are crucial to understand the role of the endocrine pancreas in diabetes pathogenesis and the development of new therapeutic approaches. However, so far most research addressing islet of Langerhans biology relies on islets obtained via enzymatic isolation from the pancreas, which is known to cause mechanical and chemical stress, thus having a major impact on islet cell physiology. To circumvent the limitations of islet isolation, we have pioneered a platform for the study of islet physiology using the pancreas tissue slice technique. This approach allows to explore the detailed three-dimensional morphology of intact pancreatic tissue at a cellular level and to investigate islet cell function under near-physiological conditions. The described procedure is less damaging and faster than alternative approaches and particularly advantageous for studying infiltrated and structurally damaged islets. Furthermore, pancreas tissue slices have proven valuable for acute studies of endocrine as well as exocrine cell physiology in their conserved natural environment. We here provide a detailed protocol for the preparation of mouse pancreas tissue slices, the assessment of slice viability, and the study of pancreas cell physiology by hormone secretion and immunofluorescence staining.


Subject(s)
Histocytological Preparation Techniques/methods , Islets of Langerhans/physiology , Pancreas/cytology , Tissue Culture Techniques/methods , Animals , Cell Survival/physiology , Fluorescent Antibody Technique/methods , Insulin Secretion/physiology , Mice , Microfluidic Analytical Techniques/methods , Tissue and Organ Harvesting
17.
J Allergy Clin Immunol ; 143(5): 1849-1864.e4, 2019 05.
Article in English | MEDLINE | ID: mdl-30339853

ABSTRACT

BACKGROUND: Mast cells (MCs) are best known as key effector cells of allergic reactions, but they also play an important role in host defense against pathogens. Despite increasing evidence for a critical effect of MCs on adaptive immunity, the underlying mechanisms are poorly understood. OBJECTIVE: Here we monitored MC intercellular communication with dendritic cells (DCs), MC activation, and degranulation and tracked the fate of exocytosed mast cell granules (MCGs) during skin inflammation. METHODS: Using a strategy to stain intracellular MCGs in vivo, we tracked the MCG fate after skin inflammation-induced MC degranulation. Furthermore, exogenous MCGs were applied to MC-deficient mice by means of intradermal injection. MCG effects on DC functionality and adaptive immune responses in vivo were assessed by combining intravital multiphoton microscopy with flow cytometry and functional assays. RESULTS: We demonstrate that dermal DCs engulf the intact granules exocytosed by MCs on skin inflammation. Subsequently, the engulfed MCGs are actively shuttled to skin-draining lymph nodes and finally degraded inside DCs within the lymphoid tissue. Most importantly, MCG uptake promotes DC maturation and migration to skin-draining lymph nodes, partially through MC-derived TNF, and boosts their T-cell priming efficiency. Surprisingly, exogenous MCGs alone are sufficient to induce a prominent DC activation and T-cell response. CONCLUSION: Our study highlights a unique feature of peripheral MCs to affect lymphoid tissue-borne adaptive immunity over distance by modifying DC functionality through delivery of granule-stored mediators.


Subject(s)
Dermatitis/metabolism , Hypersensitivity/metabolism , Langerhans Cells/physiology , Mast Cells/physiology , Secretory Vesicles/metabolism , Skin/immunology , T-Lymphocytes/immunology , Animals , Cell Communication , Cell Differentiation , Cell Movement , Cells, Cultured , Dermatitis/immunology , Disease Models, Animal , Endocytosis , Humans , Hypersensitivity/immunology , Lymphocyte Activation , Mice , Mice, Inbred C57BL
18.
Diabetologia ; 61(1): 182-192, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28884198

ABSTRACT

AIMS/HYPOTHESIS: Tissue-resident macrophages sense the microenvironment and respond by producing signals that act locally to maintain a stable tissue state. It is now known that pancreatic islets contain their own unique resident macrophages, which have been shown to promote proliferation of the insulin-secreting beta cell. However, it is unclear how beta cells communicate with islet-resident macrophages. Here we hypothesised that islet macrophages sense changes in islet activity by detecting signals derived from beta cells. METHODS: To investigate how islet-resident macrophages respond to cues from the microenvironment, we generated mice expressing a genetically encoded Ca2+ indicator in myeloid cells. We produced living pancreatic slices from these mice and used them to monitor macrophage responses to stimulation of acinar, neural and endocrine cells. RESULTS: Islet-resident macrophages expressed functional purinergic receptors, making them exquisite sensors of interstitial ATP levels. Indeed, islet-resident macrophages responded selectively to ATP released locally from beta cells that were physiologically activated with high levels of glucose. Because ATP is co-released with insulin and is exclusively secreted by beta cells, the activation of purinergic receptors on resident macrophages facilitates their awareness of beta cell secretory activity. CONCLUSIONS/INTERPRETATION: Our results indicate that islet macrophages detect ATP as a proxy signal for the activation state of beta cells. Sensing beta cell activity may allow macrophages to adjust the secretion of factors to promote a stable islet composition and size.


Subject(s)
Adenosine Triphosphate/metabolism , Macrophages/metabolism , Pancreas/cytology , Pancreas/metabolism , Animals , Insulin/metabolism , Insulin-Secreting Cells/metabolism , Islets of Langerhans/cytology , Mice
19.
J Exp Med ; 214(12): 3791-3811, 2017 Dec 04.
Article in English | MEDLINE | ID: mdl-29084819

ABSTRACT

Mast cells (MCs) and dendritic cells (DCs) are essential innate sentinels populating host-environment interfaces. Using longitudinal intravital multiphoton microscopy of DCGFP/MCRFP reporter mice, we herein provide in vivo evidence that migratory DCs execute targeted cell-to-cell interactions with stationary MCs before leaving the inflamed skin to draining lymph nodes. During initial stages of skin inflammation, DCs dynamically scan MCs, whereas at a later stage, long-lasting interactions predominate. These innate-to-innate synapse-like contacts ultimately culminate in DC-to-MC molecule transfers including major histocompatibility complex class II (MHCII) proteins enabling subsequent ex vivo priming of allogeneic T cells with a specific cytokine signature. The extent of MHCII transfer to MCs correlates with their T cell priming efficiency. Importantly, preventing the cross talk by preceding DC depletion decreases MC antigen presenting capacity and T cell-driven inflammation. Consequently, we identify an innate intercellular communication arming resident MCs with key DC functions that might contribute to the acute defense potential during critical periods of migration-based DC absence.


Subject(s)
Dendritic Cells/immunology , Histocompatibility Antigens Class II/immunology , Inflammation/immunology , Inflammation/pathology , Mast Cells/immunology , Skin/pathology , Animals , Antigen Presentation/immunology , Cell Communication , Cell Movement , Cell Shape , Cross-Priming/immunology , Dermatitis, Contact/immunology , Dermatitis, Contact/pathology , Dinitrofluorobenzene , Ear/pathology , Haptens/immunology , Image Processing, Computer-Assisted , Mice, Inbred C57BL , Phenotype , T-Lymphocytes/immunology , Time-Lapse Imaging
20.
Mol Metab ; 6(9): 943-957, 2017 09.
Article in English | MEDLINE | ID: mdl-28951820

ABSTRACT

BACKGROUND: Plasma insulin levels are predominantly the product of the morphological mass of insulin producing beta cells in the pancreatic islets of Langerhans and the functional status of each of these beta cells. Thus, deficiency in either beta cell mass or function, or both, can lead to insufficient levels of insulin, resulting in hyperglycemia and diabetes. Nonetheless, the precise contribution of beta cell mass and function to the pathogenesis of diabetes as well as the underlying mechanisms are still unclear. In the past, this was largely due to the restricted number of technologies suitable for studying the scarcely accessible human beta cells. However, in recent years, a number of new platforms have been established to expand the available techniques and to facilitate deeper insight into the role of human beta cell mass and function as cause for diabetes and as potential treatment targets. SCOPE OF REVIEW: This review discusses the current knowledge about contribution of human beta cell mass and function to different stages of type 1 and type 2 diabetes pathogenesis. Furthermore, it highlights standard and newly developed technological platforms for the study of human beta cell biology, which can be used to increase our understanding of beta cell mass and function in human glucose homeostasis. MAJOR CONCLUSIONS: In contrast to early disease models, recent studies suggest that in type 1 and type 2 diabetes impairment of beta cell function is an early feature of disease pathogenesis while a substantial decrease in beta cell mass occurs more closely to clinical manifestation. This suggests that, in addition to beta cell mass replacement for late stage therapies, the development of novel strategies for protection and recovery of beta cell function could be most promising for successful diabetes treatment and prevention. The use of today's developing and wide range of technologies and platforms for the study of human beta cells will allow for a more detailed investigation of the underlying mechanisms and will facilitate development of treatment approaches to specifically target human beta cell mass and function.


Subject(s)
Diabetes Mellitus/physiopathology , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/physiology , Animals , Diabetes Mellitus/drug therapy , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 2/metabolism , Disease Models, Animal , Humans , Hyperglycemia/metabolism , Insulin/metabolism , Islets of Langerhans/metabolism , Islets of Langerhans Transplantation
SELECTION OF CITATIONS
SEARCH DETAIL
...