Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 118
Filter
1.
medRxiv ; 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39132491

ABSTRACT

The human leukocyte antigen (HLA) region plays an important role in human health through involvement in immune cell recognition and maturation. While genetic variation in the HLA region is associated with many diseases, the pleiotropic patterns of these associations have not been systematically investigated. Here, we developed a haplotype approach to investigate disease associations phenome-wide for 412,181 Finnish individuals and 2,459 traits. Across the 1,035 diseases with a GWAS association, we found a 17-fold average per-SNP enrichment of hits in the HLA region. Altogether, we identified 7,649 HLA associations across 647 traits, including 1,750 associations uncovered by haplotype analysis. We find some haplotypes show trade-offs between diseases, while others consistently increase risk across traits, indicating a complex pleiotropic landscape involving a range of diseases. This study highlights the extensive impact of HLA variation on disease risk, and underscores the importance of classical and non-classical genes, as well as non-coding variation.

2.
Cell Genom ; : 100629, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39111318

ABSTRACT

With hundreds of copies of rDNA, it is unknown whether they possess sequence variations that form different types of ribosomes. Here, we developed an algorithm for long-read variant calling, termed RGA, which revealed that variations in human rDNA loci are predominantly insertion-deletion (indel) variants. We developed full-length rRNA sequencing (RIBO-RT) and in situ sequencing (SWITCH-seq), which showed that translating ribosomes possess variation in rRNA. Over 1,000 variants are lowly expressed. However, tens of variants are abundant and form distinct rRNA subtypes with different structures near indels as revealed by long-read rRNA structure probing coupled to dimethyl sulfate sequencing. rRNA subtypes show differential expression in endoderm/ectoderm-derived tissues, and in cancer, low-abundance rRNA variants can become highly expressed. Together, this study identifies the diversity of ribosomes at the level of rRNA variants, their chromosomal location, and unique structure as well as the association of ribosome variation with tissue-specific biology and cancer.

3.
medRxiv ; 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39132496

ABSTRACT

Background: Genetic factors play an important role in prostate cancer (PCa) development with polygenic risk scores (PRS) predicting disease risk across genetic ancestries. However, there are few convincing modifiable factors for PCa and little is known about their potential interaction with genetic risk. We analyzed incident PCa cases (n=6,155) and controls (n=98,257) of European and African ancestry from the UK Biobank (UKB) cohort to evaluate the role of neighborhood socioeconomic status (nSES)-and how it may interact with PRS-on PCa risk. Methods: We evaluated a multi-ancestry PCa PRS containing 269 genetic variants to understand the association of germline genetics with PCa in UKB. Using the English Indices of Deprivation, a set of validated metrics that quantify lack of resources within geographical areas, we performed logistic regression to investigate the main effects and interactions between nSES deprivation, PCa PRS, and PCa. Results: The PCa PRS was strongly associated with PCa (OR=2.04; 95%CI=2.00-2.09; P<0.001). Additionally, nSES deprivation indices were inversely associated with PCa: employment (OR=0.91; 95%CI=0.86-0.96; P<0.001), education (OR=0.94; 95%CI=0.83-0.98; P<0.001), health (OR=0.91; 95%CI=0.86-0.96; P<0.001), and income (OR=0.91; 95%CI=0.86-0.96; P<0.001). The PRS effects showed little heterogeneity across nSES deprivation indices, except for the Townsend Index (P=0.03). Conclusions: We reaffirmed genetics as a risk factor for PCa and identified nSES deprivation domains that influence PCa detection and are potentially correlated with environmental exposures that are a risk factor for PCa. These findings also suggest that nSES and genetic risk factors for PCa act independently.

4.
Biochem Med (Zagreb) ; 34(3): 030101, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39171086

ABSTRACT

Researchers and practitioners are typically familiar with descriptive statistics and statistical inference. However, outside of regression techniques, little attention may be given to questions around prediction. In the current paper, we introduce prediction intervals using fundamental concepts that are learned in descriptive and inferential statistical training (i.e., sampling error, standard deviation). We walk through an example using simple hand calculations and reference a simple R package that can be used to calculate prediction intervals.


Subject(s)
Models, Statistical , Humans , Data Interpretation, Statistical
5.
Bioinformatics ; 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39185959

ABSTRACT

SUMMARY: Pool sequencing is an efficient method for capturing genome-wide allele frequencies from multiple individuals, with broad applications such as studying adaptation in Evolve-and-Resequence experiments, monitoring of genetic diversity in wild populations, and genotype-to-phenotype mapping. Here, we present grenedalf, a command line tool written in C ++ that implements common population genetic statistics such as θ, Tajima's D, and F  ST for Pool sequencing. It is orders of magnitude faster than current tools, and is focused on providing usability and scalability, while also offering a plethora of input file formats and convenience options. AVAILABILITY AND IMPLEMENTATION: grenedalf is published under the GPL-3, and freely available at github.com/lczech/grenedalf. SUPPLEMENTARY INFORMATION: Supplementary data are available online.

6.
bioRxiv ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-39005431

ABSTRACT

Gene regulatory networks (GRNs) govern many core developmental and biological processes underlying human complex traits. Even with broad-scale efforts to characterize the effects of molecular perturbations and interpret gene coexpression, it remains challenging to infer the architecture of gene regulation in a precise and efficient manner. Key properties of GRNs, like hierarchical structure, modular organization, and sparsity, provide both challenges and opportunities for this objective. Here, we seek to better understand properties of GRNs using a new approach to simulate their structure and model their function. We produce realistic network structures with a novel generating algorithm based on insights from small-world network theory, and we model gene expression regulation using stochastic differential equations formulated to accommodate modeling molecular perturbations. With these tools, we systematically describe the effects of gene knockouts within and across GRNs, finding a subset of networks that recapitulate features of a recent genome-scale perturbation study. With deeper analysis of these exemplar networks, we consider future avenues to map the architecture of gene expression regulation using data from cells in perturbed and unperturbed states, finding that while perturbation data are critical to discover specific regulatory interactions, data from unperturbed cells may be sufficient to reveal regulatory programs.

7.
bioRxiv ; 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38948697

ABSTRACT

Natural selection on complex traits is difficult to study in part due to the ascertainment inherent to genome-wide association studies (GWAS). The power to detect a trait-associated variant in GWAS is a function of frequency and effect size - but for traits under selection, the effect size of a variant determines the strength of selection against it, constraining its frequency. To account for GWAS ascertainment, we propose studying the joint distribution of allele frequencies across populations, conditional on the frequencies in the GWAS cohort. Before considering these conditional frequency spectra, we first characterized the impact of selection and non-equilibrium demography on allele frequency dynamics forwards and backwards in time. We then used these results to understand conditional frequency spectra under realistic human demography. Finally, we investigated empirical conditional frequency spectra for GWAS variants associated with 106 complex traits, finding compelling evidence for either stabilizing or purifying selection. Our results provide insight into polygenic score portability and other properties of variants ascertained with GWAS, highlighting the utility of conditional frequency spectra.

8.
Nat Genet ; 56(8): 1632-1643, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38977852

ABSTRACT

Measures of selective constraint on genes have been used for many applications, including clinical interpretation of rare coding variants, disease gene discovery and studies of genome evolution. However, widely used metrics are severely underpowered at detecting constraints for the shortest ~25% of genes, potentially causing important pathogenic mutations to be overlooked. Here we developed a framework combining a population genetics model with machine learning on gene features to enable accurate inference of an interpretable constraint metric, shet. Our estimates outperform existing metrics for prioritizing genes important for cell essentiality, human disease and other phenotypes, especially for short genes. Our estimates of selective constraint should have wide utility for characterizing genes relevant to human disease. Finally, our inference framework, GeneBayes, provides a flexible platform that can improve the estimation of many gene-level properties, such as rare variant burden or gene expression differences.


Subject(s)
Bayes Theorem , Evolution, Molecular , Genetics, Population , Models, Genetic , Humans , Genetics, Population/methods , Machine Learning , Selection, Genetic , Mutation , Phenotype
9.
Acta Physiol (Oxf) ; 240(8): e14191, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38895950

ABSTRACT

AIM: Physical activity (PA) is a key component for brain health and Reserve, and it is among the main dementia protective factors. However, the neurobiological mechanisms underpinning Reserve are not fully understood. In this regard, a noradrenergic (NA) theory of cognitive reserve (Robertson, 2013) has proposed that the upregulation of NA system might be a key factor for building reserve and resilience to neurodegeneration because of the neuroprotective role of NA across the brain. PA elicits an enhanced catecholamine response, in particular for NA. By increasing physical commitment, a greater amount of NA is synthetised in response to higher oxygen demand. More physically trained individuals show greater capabilities to carry oxygen resulting in greater Vo 2 max - a measure of oxygen uptake and physical fitness (PF). METHODS: We hypothesized that greater Vo 2 max would be related to greater Locus Coeruleus (LC) MRI signal intensity. In a sample of 41 healthy subjects, we performed Voxel-Based Morphometry analyses, then repeated for the other neuromodulators as a control procedure (Serotonin, Dopamine and Acetylcholine). RESULTS: As hypothesized, greater Vo 2 max related to greater LC signal intensity, and weaker associations emerged for the other neuromodulators. CONCLUSION: This newly established link between Vo 2 max and LC-NA system offers further understanding of the neurobiology underpinning Reserve in relationship to PA. While this study supports Robertson's theory proposing the upregulation of the NA system as a possible key factor building Reserve, it also provides ground for increasing LC-NA system resilience to neurodegeneration via Vo 2 max enhancement.


Subject(s)
Locus Coeruleus , Norepinephrine , Physical Fitness , Humans , Locus Coeruleus/physiology , Locus Coeruleus/metabolism , Male , Female , Aged , Physical Fitness/physiology , Norepinephrine/metabolism , Middle Aged , Oxygen Consumption/physiology , Exercise/physiology , Magnetic Resonance Imaging
10.
bioRxiv ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38854031

ABSTRACT

Background: Predicting future brain health is a complex endeavor that often requires integrating diverse data sources. The neural patterns and interactions identified through neuroimaging serve as the fundamental basis and early indicators that precede the manifestation of observable behaviors or psychological states. New Method: In this work, we introduce a multimodal predictive modeling approach that leverages an imaging-informed methodology to gain insights into future behavioral outcomes. We employed three methodologies for evaluation: an assessment-only approach using support vector regression (SVR), a neuroimaging-only approach using random forest (RF), and an image-assisted method integrating the static functional network connectivity (sFNC) matrix from resting-state functional magnetic resonance imaging (rs-fMRI) alongside assessments. The image-assisted approach utilized a partially conditional variational autoencoder (PCVAE) to predict brain health constructs in future visits from the behavioral data alone. Results: Our performance evaluation indicates that the image-assisted method excels in handling conditional information to predict brain health constructs in subsequent visits and their longitudinal changes. These results suggest that during the training stage, the PCVAE model effectively captures relevant information from neuroimaging data, thereby potentially improving accuracy in making future predictions using only assessment data. Comparison with Existing Methods: The proposed image-assisted method outperforms traditional assessment-only and neuroimaging-only approaches by effectively integrating neuroimaging data with assessment factors. Conclusion: This study underscores the potential of neuroimaging-informed predictive modeling to advance our comprehension of the complex relationships between cognitive performance and neural connectivity.

11.
Ann Appl Stat ; 18(1): 858-881, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38784669

ABSTRACT

In scientific studies involving analyses of multivariate data, basic but important questions often arise for the researcher: Is the sample exchangeable, meaning that the joint distribution of the sample is invariant to the ordering of the units? Are the features independent of one another, or perhaps the features can be grouped so that the groups are mutually independent? In statistical genomics, these considerations are fundamental to downstream tasks such as demographic inference and the construction of polygenic risk scores. We propose a non-parametric approach, which we call the V test, to address these two questions, namely, a test of sample exchangeability given dependency structure of features, and a test of feature independence given sample exchangeability. Our test is conceptually simple, yet fast and flexible. It controls the Type I error across realistic scenarios, and handles data of arbitrary dimensions by leveraging large-sample asymptotics. Through extensive simulations and a comparison against unsupervised tests of stratification based on random matrix theory, we find that our test compares favorably in various scenarios of interest. We apply the test to data from the 1000 Genomes Project, demonstrating how it can be employed to assess exchangeability of the genetic sample, or find optimal linkage disequilibrium (LD) splits for downstream analysis. For exchangeability assessment, we find that removing rare variants can substantially increase the p-value of the test statistic. For optimal LD splitting, the V test reports different optimal splits than previous approaches not relying on hypothesis testing. Software for our methods is available in R (CRAN: flintyR) and Python (PyPI: flintyPy).

12.
Elife ; 132024 Jan 30.
Article in English | MEDLINE | ID: mdl-38288729

ABSTRACT

Ancient DNA research in the past decade has revealed that European population structure changed dramatically in the prehistoric period (14,000-3000 years before present, YBP), reflecting the widespread introduction of Neolithic farmer and Bronze Age Steppe ancestries. However, little is known about how population structure changed from the historical period onward (3000 YBP - present). To address this, we collected whole genomes from 204 individuals from Europe and the Mediterranean, many of which are the first historical period genomes from their region (e.g. Armenia and France). We found that most regions show remarkable inter-individual heterogeneity. At least 7% of historical individuals carry ancestry uncommon in the region where they were sampled, some indicating cross-Mediterranean contacts. Despite this high level of mobility, overall population structure across western Eurasia is relatively stable through the historical period up to the present, mirroring geography. We show that, under standard population genetics models with local panmixia, the observed level of dispersal would lead to a collapse of population structure. Persistent population structure thus suggests a lower effective migration rate than indicated by the observed dispersal. We hypothesize that this phenomenon can be explained by extensive transient dispersal arising from drastically improved transportation networks and the Roman Empire's mobilization of people for trade, labor, and military. This work highlights the utility of ancient DNA in elucidating finer scale human population dynamics in recent history.


Subject(s)
DNA, Ancient , Genome, Human , Humans , Europe , France , Genetics, Population , Population Dynamics , Human Migration
13.
bioRxiv ; 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-37292653

ABSTRACT

Measures of selective constraint on genes have been used for many applications including clinical interpretation of rare coding variants, disease gene discovery, and studies of genome evolution. However, widely-used metrics are severely underpowered at detecting constraint for the shortest ~25% of genes, potentially causing important pathogenic mutations to be over-looked. We developed a framework combining a population genetics model with machine learning on gene features to enable accurate inference of an interpretable constraint metric, s het . Our estimates outperform existing metrics for prioritizing genes important for cell essentiality, human disease, and other phenotypes, especially for short genes. Our new estimates of selective constraint should have wide utility for characterizing genes relevant to human disease. Finally, our inference framework, GeneBayes, provides a flexible platform that can improve estimation of many gene-level properties, such as rare variant burden or gene expression differences.

14.
Cereb Cortex ; 34(1)2024 01 14.
Article in English | MEDLINE | ID: mdl-37968568

ABSTRACT

The goal of precision brain health is to accurately predict individuals' longitudinal patterns of brain change. We trained a machine learning model to predict changes in a cognitive index of brain health from neurophysiologic metrics. A total of 48 participants (ages 21-65) completed a sensorimotor task during 2 functional magnetic resonance imaging sessions 6 mo apart. Hemodynamic response functions (HRFs) were parameterized using traditional (amplitude, dispersion, latency) and novel (curvature, canonicality) metrics, serving as inputs to a neural network model that predicted gain on indices of brain health (cognitive factor scores) for each participant. The optimal neural network model successfully predicted substantial gain on the cognitive index of brain health with 90% accuracy (determined by 5-fold cross-validation) from 3 HRF parameters: amplitude change, dispersion change, and similarity to a canonical HRF shape at baseline. For individuals with canonical baseline HRFs, substantial gain in the index is overwhelmingly predicted by decreases in HRF amplitude. For individuals with non-canonical baseline HRFs, substantial gain in the index is predicted by congruent changes in both HRF amplitude and dispersion. Our results illustrate that neuroimaging measures can track cognitive indices in healthy states, and that machine learning approaches using novel metrics take important steps toward precision brain health.


Subject(s)
Brain , Hemodynamics , Humans , Brain/diagnostic imaging , Hemodynamics/physiology , Brain Mapping , Magnetic Resonance Imaging/methods , Neuroimaging , Cognition
15.
Nat Genet ; 55(11): 1866-1875, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37857933

ABSTRACT

Most signals in genome-wide association studies (GWAS) of complex traits implicate noncoding genetic variants with putative gene regulatory effects. However, currently identified regulatory variants, notably expression quantitative trait loci (eQTLs), explain only a small fraction of GWAS signals. Here, we show that GWAS and cis-eQTL hits are systematically different: eQTLs cluster strongly near transcription start sites, whereas GWAS hits do not. Genes near GWAS hits are enriched in key functional annotations, are under strong selective constraint and have complex regulatory landscapes across different tissue/cell types, whereas genes near eQTLs are depleted of most functional annotations, show relaxed constraint, and have simpler regulatory landscapes. We describe a model to understand these observations, including how natural selection on complex traits hinders discovery of functionally relevant eQTLs. Our results imply that GWAS and eQTL studies are systematically biased toward different types of variant, and support the use of complementary functional approaches alongside the next generation of eQTL studies.


Subject(s)
Genome-Wide Association Study , Multifactorial Inheritance , Gene Expression Regulation/genetics , Quantitative Trait Loci/genetics , Gene Expression , Polymorphism, Single Nucleotide/genetics
16.
bioRxiv ; 2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37873127

ABSTRACT

Epigenetic regulation orchestrates mammalian transcription, but functional links between them remain elusive. To tackle this problem, we here use epigenomic and transcriptomic data from 13 ENCODE cell types to train machine learning models to predict gene expression from histone post-translational modifications (PTMs), achieving transcriptome-wide correlations of ~ 0.70 - 0.79 for most samples. In addition to recapitulating known associations between histone PTMs and expression patterns, our models predict that acetylation of histone subunit H3 lysine residue 27 (H3K27ac) near the transcription start site (TSS) significantly increases expression levels. To validate this prediction experimentally and investigate how engineered vs. natural deposition of H3K27ac might differentially affect expression, we apply the synthetic dCas9-p300 histone acetyltransferase system to 8 genes in the HEK293T cell line. Further, to facilitate model building, we perform MNase-seq to map genome-wide nucleosome occupancy levels in HEK293T. We observe that our models perform well in accurately ranking relative fold changes among genes in response to the dCas9-p300 system; however, their ability to rank fold changes within individual genes is noticeably diminished compared to predicting expression across cell types from their native epigenetic signatures. Our findings highlight the need for more comprehensive genome-scale epigenome editing datasets, better understanding of the actual modifications made by epigenome editing tools, and improved causal models that transfer better from endogenous cellular measurements to perturbation experiments. Together these improvements would facilitate the ability to understand and predictably control the dynamic human epigenome with consequences for human health.

17.
PLoS One ; 18(10): e0290954, 2023.
Article in English | MEDLINE | ID: mdl-37874848

ABSTRACT

It has been suggested that increased status that comes from being an award winner can generate enduring advantages that compound over one's career via the Matthew Effect. However, research in this area has yielded conflicting results and has been unable to isolate the unique effect of status on career outcomes from the positive endogenous characteristics of award winners. In the current research, we attempt to address previous research limitations and examine if winning an award is associated with career outcomes (i.e., opportunities and productivity) irrespective of individual productivity levels prior to receiving an award. We examined our research questions using observational data of National Hockey League (NHL) league championship winners and non-winners (N = 427). By using a team award and several different analytic approaches we were able to examine the unique effects of affiliation-based external status, generated from an award win, on career outcomes. Our results generally show support for the Matthew Effect and suggest that affiliation-based external status, achieved by an award win, provides access to increased opportunities, which ultimately results in more productivity. We discuss the importance of incorporating opportunity and investigating its role in the cumulative advantage process and implications of the results.


Subject(s)
Awards and Prizes , Hockey , Humans
18.
Front Psychol ; 14: 1175652, 2023.
Article in English | MEDLINE | ID: mdl-37771803

ABSTRACT

Introduction: The workplace typically affords one of the longest periods for continued brain health growth. Brain health is defined by the World Health Organization (WHO) as the promotion of optimal brain development, cognitive health, and well-being across the life course, which we expanded to also include connectedness to people and purpose. This work was motivated by prior work showing individuals, outside of an aggregate setting, benefitted from training as measured by significant performance gains on a holistic BrainHealth Index and its factors (i.e., clarity, connectedness, emotional balance). The current research was conducted during the changing remote work practices emerging post-pandemic to test whether a capacity-building training would be associated with significant gains on measures of brain health and components of burnout. The study also tested the influence of utilization of training modules and days in office for individuals to inform workplace practices. Methods: We investigated whether 193 individuals across a firm's sites would improve on measures of brain health and burnout from micro-delivery of online tactical brain health strategies, combined with two individualized coaching sessions, and practical exercises related to work and personal life, over a six-month period. Brain health was measured using an evidenced-based measure (BrainHealth™ Index) with its components (clarity, connectedness, emotional balance) consistent with the WHO definition. Burnout was measured using the Maslach Burnout Inventory Human Services Survey. Days in office were determined by access to digital workplace applications from the firm's network. Regression analyses were used to assess relationships between change in BrainHealth factors and change in components of the Maslach Burnout Inventory. Results: Results at posttest indicated that 75% of the individuals showed gains on a composite BrainHealth Index and across all three composite factors contributing to brain health. Benefits were directly tied to training utilization such that those who completed the core modules showed the greatest gains. The current results also found an association between gains on both the connectedness and emotional balance brain health factors and reduced on burnout components of occupational exhaustion and depersonalization towards one's workplace. We found that fewer days in the office were associated with greater gains in the clarity factor, but not for connectedness and emotional balance. Discussion: These results support the value of a proactive, capacity-building training to benefit all employees to complement the more widespread limited offerings that address a smaller segment who need mental illness assistance programs. The future of work may be informed by corporate investment in focused efforts to boost collective brain capital through a human-centered, capacity-building approach. Efforts are underway to uncover the value of better brain health, i.e., Brainomics© - which includes economic, societal, and individual benefits.

19.
Genetics ; 225(3)2023 11 01.
Article in English | MEDLINE | ID: mdl-37724741

ABSTRACT

The discrete-time Wright-Fisher (DTWF) model and its diffusion limit are central to population genetics. These models can describe the forward-in-time evolution of allele frequencies in a population resulting from genetic drift, mutation, and selection. Computing likelihoods under the diffusion process is feasible, but the diffusion approximation breaks down for large samples or in the presence of strong selection. Existing methods for computing likelihoods under the DTWF model do not scale to current exome sequencing sample sizes in the hundreds of thousands. Here, we present a scalable algorithm that approximates the DTWF model with provably bounded error. Our approach relies on two key observations about the DTWF model. The first is that transition probabilities under the model are approximately sparse. The second is that transition distributions for similar starting allele frequencies are extremely close as distributions. Together, these observations enable approximate matrix-vector multiplication in linear (as opposed to the usual quadratic) time. We prove similar properties for Hypergeometric distributions, enabling fast computation of likelihoods for subsamples of the population. We show theoretically and in practice that this approximation is highly accurate and can scale to population sizes in the tens of millions, paving the way for rigorous biobank-scale inference. Finally, we use our results to estimate the impact of larger samples on estimating selection coefficients for loss-of-function variants. We find that increasing sample sizes beyond existing large exome sequencing cohorts will provide essentially no additional information except for genes with the most extreme fitness effects.


Subject(s)
Biological Specimen Banks , Genetics, Population , Gene Frequency , Genetic Drift , Probability , Models, Genetic , Selection, Genetic
20.
Nat Ecol Evol ; 7(9): 1515-1524, 2023 09.
Article in English | MEDLINE | ID: mdl-37592021

ABSTRACT

The Iron Age was a dynamic period in central Mediterranean history, with the expansion of Greek and Phoenician colonies and the growth of Carthage into the dominant maritime power of the Mediterranean. These events were facilitated by the ease of long-distance travel following major advances in seafaring. We know from the archaeological record that trade goods and materials were moving across great distances in unprecedented quantities, but it is unclear how these patterns correlate with human mobility. Here, to investigate population mobility and interactions directly, we sequenced the genomes of 30 ancient individuals from coastal cities around the central Mediterranean, in Tunisia, Sardinia and central Italy. We observe a meaningful contribution of autochthonous populations, as well as highly heterogeneous ancestry including many individuals with non-local ancestries from other parts of the Mediterranean region. These results highlight both the role of local populations and the extreme interconnectedness of populations in the Iron Age Mediterranean. By studying these trans-Mediterranean neighbours together, we explore the complex interplay between local continuity and mobility that shaped the Iron Age societies of the central Mediterranean.


Subject(s)
DNA, Ancient , Human Migration , Mediterranean Region , Archaeology , Human Migration/history , Humans , Principal Component Analysis , Human Genetics , DNA, Ancient/analysis , Sequence Analysis, DNA , Burial , Anthropology , History, Ancient
SELECTION OF CITATIONS
SEARCH DETAIL