Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Neuropharmacology ; 123: 34-45, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-28504123

ABSTRACT

Friedreich's ataxia (FA) is a progressive neurodegenerative disease caused by reduced levels of the mitochondrial protein frataxin (FXN). Recombinant human erythropoietin (rhEPO) increased FXN protein in vitro and in early clinical studies, while no published reports evaluate rhEPO in animal models of FA. STS-E412 and STS-E424 are novel small molecule agonists of the tissue-protective, but not the erythropoietic EPO receptor. We find that rhEPO, STS-E412 and STS-E424 increase FXN expression in vitro and in vivo. RhEPO, STS-E412 and STS-E424 increase FXN by up to 2-fold in primary human cortical cells and in retinoic-acid differentiated murine P19 cells. In primary human cortical cells, the increase in FXN protein was accompanied by an increase in FXN mRNA, detectable within 4 h. RhEPO and low nanomolar concentrations of STS-E412 and STS-E424 also increase FXN in normal and FA patient-derived PBMC by 20%-40% within 24 h, an effect that was comparable to that by HDAC inhibitor 4b. In vivo, STS-E412 increased Fxn mRNA and protein in wild-type C57BL6/j mice. RhEPO, STS-E412, and STS-E424 increase FXN expression in the heart of FXN-deficient KIKO mice. In contrast, FXN expression in the brains of KIKO mice increased following treatment with STS-E412 and STS-E424, but not following treatment with rhEPO. Unexpectedly, rhEPO-treated KIKO mice developed severe splenomegaly, while no splenomegaly was observed in STS-E412- or STS-E424-treated mice. RhEPO, STS-E412 and STS-E424 upregulate FXN expression in vitro at equal efficacy, however, the effects of the small molecules on FXN expression in the CNS are superior to rhEPO in vivo.


Subject(s)
Erythropoietin/pharmacology , Neuroprotective Agents/pharmacology , Pyrimidines/pharmacology , Receptors, Erythropoietin/agonists , Recombinant Proteins/pharmacology , Triazoles/pharmacology , Adult , Animals , Cells, Cultured , Cerebral Cortex/drug effects , Cerebral Cortex/metabolism , Female , Friedreich Ataxia/drug therapy , Friedreich Ataxia/metabolism , Histone Deacetylase Inhibitors/pharmacology , Humans , Iron-Binding Proteins/genetics , Iron-Binding Proteins/metabolism , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Male , Mice, Inbred C57BL , Mice, Transgenic , Middle Aged , Neurons/drug effects , Neurons/metabolism , Receptors, Erythropoietin/metabolism , Young Adult , Frataxin
2.
Mol Pharmacol ; 88(2): 357-67, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26018904

ABSTRACT

Erythropoietin (EPO) and its receptor are expressed in a wide variety of tissues, including the central nervous system. Local expression of both EPO and its receptor is upregulated upon injury or stress and plays a role in tissue homeostasis and cytoprotection. High-dose systemic administration or local injection of recombinant human EPO has demonstrated encouraging results in several models of tissue protection and organ injury, while poor tissue availability of the protein limits its efficacy. Here, we describe the discovery and characterization of the nonpeptidyl compound STS-E412 (2-[2-(4-chlorophenoxy)ethoxy]-5,7-dimethyl-[1,2,4]triazolo[1,5-a]pyrimidine), which selectively activates the tissue-protective EPO receptor, comprising an EPO receptor subunit (EPOR) and the common ß-chain (CD131). STS-E412 triggered EPO receptor phosphorylation in human neuronal cells. STS-E412 also increased phosphorylation of EPOR, CD131, and the EPO-associated signaling molecules JAK2 and AKT in HEK293 transfectants expressing EPOR and CD131. At low nanomolar concentrations, STS-E412 provided EPO-like cytoprotective effects in primary neuronal cells and renal proximal tubular epithelial cells. The receptor selectivity of STS-E412 was confirmed by a lack of phosphorylation of the EPOR/EPOR homodimer, lack of activity in off-target selectivity screening, and lack of functional effects in erythroleukemia cell line TF-1 and CD34(+) progenitor cells. Permeability through artificial membranes and Caco-2 cell monolayers in vitro and penetrance across the blood-brain barrier in vivo suggest potential for central nervous system availability of the compound. To our knowledge, STS-E412 is the first nonpeptidyl, selective activator of the tissue-protective EPOR/CD131 receptor. Further evaluation of the potential of STS-E412 in central nervous system diseases and organ protection is warranted.


Subject(s)
Brain/embryology , Erythropoietin/metabolism , Neurons/metabolism , Pyrimidines/pharmacology , Pyrimidines/pharmacokinetics , Receptors, Erythropoietin/agonists , Triazoles/pharmacology , Triazoles/pharmacokinetics , Animals , Biological Availability , Blood-Brain Barrier/drug effects , Brain/cytology , Caco-2 Cells , Cells, Cultured , Cytokine Receptor Common beta Subunit/metabolism , HEK293 Cells , Humans , Rats , Signal Transduction/drug effects
3.
Curr Top Med Chem ; 15(10): 955-69, 2015.
Article in English | MEDLINE | ID: mdl-25832721

ABSTRACT

Parkinson's disease (PD) is a neurodegenerative disease affecting more than a million people in the USA alone. While there are effective symptomatic treatments for PD, there is an urgent need for new therapies that slow or halt the progressive death of dopaminergic neurons. Significant progress has been made in understanding the pathophysiology of PD, which has substantially facilitated the discovery efforts to identify novel drugs. The tissue-protective erythropoietin (EPO) receptor, EPOR/CD131, has emerged as one promising target for disease-modifying therapies. Recombinant human EPO (rhEPO), several variants of EPO, EPO-mimetic peptides, cell-based therapies using cells incubated with or expressing EPO, gene therapy vectors encoding EPO, and small molecule EPO mimetic compounds all show potential as therapeutic candidates. Agonists of the EPOR/CD131 receptor demonstrate potent anti-apoptotic, antioxidant, and anti-inflammatory effects and protect neurons, including dopaminergic neurons, from diverse insults in vitro and in vivo. When delivered directly to the striatum, rhEPO protects dopaminergic neurons in animal models of PD. Early-stage clinical trials testing systemic rhEPO have provided encouraging results, while additional controlled studies are required to fully assess the potential of the treatment. Poor CNS availability of proteins and challenges related to invasive delivery limit delivery of EPO protein. Several variants of EPO and small molecule agonists of the EPO receptors are making progress in preclinical studies and may offer solutions to these challenges. While EPO was initially discovered as the primary modulator of erythropoiesis, the discovery and characterization of the tissue-protective EPOR/CD131 receptor offer an opportunity to selectively target the neuroprotective receptor as an approach to identify disease-modifying treatments for PD.


Subject(s)
Antiparkinson Agents/therapeutic use , Neuroprotective Agents/therapeutic use , Parkinson Disease/drug therapy , Receptors, Erythropoietin/agonists , Animals , Humans
4.
Bioorg Med Chem Lett ; 17(17): 4987-90, 2007 Sep 01.
Article in English | MEDLINE | ID: mdl-17562361

ABSTRACT

We report the discovery of 5-(4-hydroxy-6-methyl-2-oxo-2H-pyran-3-yl)-7-(4-methylphenyl)-(E)-2,3,6,7-tetrahydro-1,4-thiazepine (2a) as an inducer of apoptosis using our proprietary cell- and caspase-based HTS assay. Through structure activity relationship (SAR) studies, 5-(4-hydroxy-6-methyl-2-oxo-2H-pyran-3-yl)-7-(2-methoxy-4-(methylthio)phenyl)-(E)-2,3,6,7-tetrahydro-1,4-thiazepine (5d) was identified as a potent apoptosis inducer with an EC(50) value of 0.08 microM in T47D cells, which was >15-fold more potent than screening hit 2a. Compound 5d also was found to be highly active in a growth inhibition assay with a GI(50) value of 0.05 microM in T47D cells and to function as an inhibitor of tubulin polymerization.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis , Caspases/metabolism , Chemistry, Pharmaceutical/methods , Neoplasms/drug therapy , Thiazepines/chemistry , Cell Line, Tumor , Cell Proliferation , Drug Design , Drug Screening Assays, Antitumor , Humans , Models, Chemical , Structure-Activity Relationship , Thiazepines/pharmacology , Tubulin/chemistry
5.
Bioorg Med Chem Lett ; 16(18): 4884-8, 2006 Sep 15.
Article in English | MEDLINE | ID: mdl-16870445

ABSTRACT

Novel analogs of (-)-saframycin A are described. The analogs are shown to be potent inhibitors of the in vitro growth of several tumor cells in a broad panel and promising as leads for further optimization. The first in vivo studies in a solid tumor model (HCT-116) reveal potent antitumor activity with associated toxicity of daily administration.


Subject(s)
Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Cell Line, Tumor , Cell Proliferation/drug effects , Humans , Isoquinolines/chemical synthesis , Isoquinolines/chemistry , Isoquinolines/pharmacokinetics , Isoquinolines/pharmacology , Mice , Mice, Inbred BALB C , Molecular Structure , Structure-Activity Relationship , Xenograft Model Antitumor Assays
6.
Bioorg Med Chem Lett ; 16(17): 4554-8, 2006 Sep 01.
Article in English | MEDLINE | ID: mdl-16784854

ABSTRACT

As a continuation of our efforts to discover novel apoptosis inducers as anticancer agents using a cell-based caspase HTS assay, 2-phenyl-oxazole-4-carboxamide derivatives were identified. The structure-activity relationships of this class of molecules were explored. Compound 1k, with EC(50) of 270 nM and GI(50) of 229 nM in human colorectal DLD-1 cells, was selected and demonstrated the ability to cleave PARP and displayed DNA laddering, the hallmarks of apoptosis. Compound 1k showed 63% tumor growth inhibition in human colorectal DLD-1 xenograft mouse model at 50 mpk, bid.


Subject(s)
Amides/chemistry , Amides/pharmacology , Apoptosis/drug effects , Oxazoles/chemistry , Oxazoles/pharmacology , Amides/chemical synthesis , Animals , Cell Line, Tumor , Female , Humans , Mice , Molecular Structure , Oxazoles/chemical synthesis , Structure-Activity Relationship , Xenograft Model Antitumor Assays
7.
Bioorg Med Chem Lett ; 16(15): 4036-40, 2006 Aug 01.
Article in English | MEDLINE | ID: mdl-16714109

ABSTRACT

A series of novel alpha-keto-[1,2,4]-oxadiazoles has been synthesized as human tryptase inhibitors for evaluation as a new class of anti-asthmatic agent. The inhibitor design is focused on using a prime-side hydrophobic pocket and the S2 pocket of beta-tryptase to achieve inhibition potency and selectivity over other serine proteases.


Subject(s)
Oxazoles/pharmacology , Serine Endopeptidases/drug effects , Crystallography, X-Ray , Humans , Kinetics , Oxazoles/chemistry , Tryptases
8.
Bioorg Med Chem Lett ; 16(15): 4085-9, 2006 Aug 01.
Article in English | MEDLINE | ID: mdl-16725321

ABSTRACT

The synthesis of novel [1,2,4]oxadiazoles and their structure-activity relationship (SAR) for the inhibition of tryptase and related serine proteases is presented. Elaboration of the P'-side afforded potent, selective, and orally bioavailable tryptase inhibitors.


Subject(s)
Enzyme Inhibitors/pharmacology , Serine Endopeptidases/drug effects , Administration, Oral , Biological Availability , Enzyme Inhibitors/administration & dosage , Enzyme Inhibitors/chemistry , Models, Molecular , Structure-Activity Relationship , Tryptases
9.
Bioorg Med Chem Lett ; 16(13): 3434-9, 2006 Jul 01.
Article in English | MEDLINE | ID: mdl-16644215

ABSTRACT

Using a scaleable, directed library approach based on orthogonally protected advanced intermediates, we have prepared a series of potent keto-1,2,4-oxadiazoles designed to explore the P(2) binding pocket of human mast cell tryptase, while building in a high degree of selectivity over human trypsin and other serine proteases.


Subject(s)
Enzyme Inhibitors/chemical synthesis , Mast Cells/drug effects , Oxadiazoles/chemical synthesis , Serine Endopeptidases/drug effects , Animals , Binding Sites/drug effects , Drug Design , Drug Evaluation, Preclinical , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Haplorhini , Humans , Mast Cells/enzymology , Mice , Molecular Structure , Oxadiazoles/chemistry , Oxadiazoles/pharmacology , Stereoisomerism , Structure-Activity Relationship , Tryptases
10.
Bioorg Med Chem Lett ; 16(12): 3180-3, 2006 Jun 15.
Article in English | MEDLINE | ID: mdl-16632360

ABSTRACT

Analogues of the tetrahydroisoquinoline family of antitumor antibiotics, 3-epi-jorumycin (3) and 3-epi-renieramycin G (4), in addition to their respective parent natural products (-)-jorumycin (1) and (-)-renieramycin G (2) were evaluated against both human colon (HCT-116) and human lung (A549) cancer cell lines. (-)-Jorumycin (1) displayed potent growth inhibition with GI50 values in the low nanomolar range (1.9-24.3 nM), while compounds 2-4 were found to be substantially less cytotoxic (GI50 0.6-14.0 microM).


Subject(s)
Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Tetrahydroisoquinolines/chemistry , Tetrahydroisoquinolines/pharmacology , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Humans , Molecular Structure , Structure-Activity Relationship , Tetrahydroisoquinolines/chemical synthesis
11.
Bioorg Med Chem Lett ; 16(10): 2796-9, 2006 May 15.
Article in English | MEDLINE | ID: mdl-16487703

ABSTRACT

Synthesis and biological data of a novel selective and efficacious factor IXa inhibitor are described along with its crystal structure in factor VIIa.


Subject(s)
Factor IXa/antagonists & inhibitors , Pyrazoles/pharmacology , Serine Proteinase Inhibitors/pharmacology , Factor IXa/chemistry , Humans , Models, Molecular
12.
J Mol Biol ; 329(1): 93-120, 2003 May 23.
Article in English | MEDLINE | ID: mdl-12742021

ABSTRACT

An extensive structural manifold of short hydrogen bond-mediated, active site-directed, serine protease inhibition motifs is revealed in a set of over 300 crystal structures involving a large suite of small molecule inhibitors (2-(2-phenol)-indoles and 2-(2-phenol)-benzimidazoles) determined over a wide range of pH (3.5-11.4). The active site hydrogen-bonding mode was found to vary markedly with pH, with the steric and electronic properties of the inhibitor, and with the type of protease (trypsin, thrombin or urokinase type plasminogen activator (uPA)). The pH dependence of the active site hydrogen-bonding motif is often intricate, constituting a distinct fingerprint of each complex. Isosteric replacements or minor substitutions within the inhibitor that modulate the pK(a) of the phenol hydroxyl involved in short hydrogen bonding, or that affect steric interactions distal to the active site, can significantly shift the pH-dependent structural profile characteristic of the parent scaffold, or produce active site-binding motifs unique to the bound analog. Ionization equilibria at the active site associated with inhibitor binding are probed in a series of the protease-inhibitor complexes through analysis of the pH dependence of the structure and environment of the active site-binding groups involved in short hydrogen bond arrays. Structures determined at high pH (>11), suggest that the pK(a) of His57 is dramatically elevated, to a value as high as approximately 11 in certain complexes. K(i) values involving uPA and trypsin determined as a function of pH for a set of inhibitors show pronounced parabolic pH dependence, the pH for optimal inhibition governed by the pK(a) of the inhibitor phenol involved in short hydrogen bonds. Comparison of structures of trypsin, thrombin and uPA, each bound by the same inhibitor, highlights important structural variations in the S1 and active sites accessible for engineering notable selectivity into remarkably small molecules with low nanomolar K(i) values.


Subject(s)
Serine Proteinase Inhibitors/chemistry , Serine Proteinase Inhibitors/pharmacology , Thrombin/antagonists & inhibitors , Urokinase-Type Plasminogen Activator/antagonists & inhibitors , Animals , Benzimidazoles/chemistry , Benzimidazoles/pharmacology , Binding Sites , Cattle , Crystallography, X-Ray , Drug Design , Humans , Hydrogen Bonding , Hydrogen-Ion Concentration , Kinetics , Models, Molecular , Protein Conformation , Static Electricity , Structure-Activity Relationship , Thrombin/chemistry , Trypsin/chemistry , Trypsin Inhibitors/chemistry , Trypsin Inhibitors/pharmacology , Urokinase-Type Plasminogen Activator/chemistry
13.
Bioorg Med Chem Lett ; 12(21): 3129-33, 2002 Nov 04.
Article in English | MEDLINE | ID: mdl-12372517

ABSTRACT

Screening of a diverse set of bisbenzimidazoles for inhibition of the hepatitis C virus (HCV) serine protease NS3/NS4A led to the identification of a potent Zn(2+)-dependent inhibitor (1). Optimization of this screening hit afforded a 10-fold more potent inhibitor (46) under Zn(2+) conditions (K(i)=27nM). This compound (46) binds also to NS3/NS4A in a Zn(2+) independent fashion (K(i)=1microM). The SAR of this class of compounds under Zn(2+) conditions is highly divergent compared to the SAR in the absence of Zn(2+), suggesting two distinct binding modes.


Subject(s)
Benzimidazoles/chemical synthesis , Benzimidazoles/pharmacology , Hepacivirus/enzymology , Serine Proteinase Inhibitors/chemical synthesis , Serine Proteinase Inhibitors/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Edetic Acid , Indicators and Reagents , Peptides/chemical synthesis , Peptides/pharmacology , RNA, Viral/chemistry , RNA, Viral/genetics , Structure-Activity Relationship , Zinc/pharmacology
14.
J Am Chem Soc ; 124(39): 11657-68, 2002 Oct 02.
Article in English | MEDLINE | ID: mdl-12296731

ABSTRACT

We describe and compare the pH dependencies of the potencies and of the bound structures of two inhibitor isosteres that form multicentered short hydrogen bond arrays at the active sites of trypsin, thrombin, and urokinase type plasminogen activator (urokinase or uPA) over certain ranges of pH. Depending on the pH, short hydrogen bond arrays at the active site are mediated by two waters, one in the oxyanion hole (H(2)O(oxy)) and one on the other (S2) side of the inhibitor (H(2)O(S2)), by one water (H(2)O(oxy)), or by no water. The dramatic variation in the length of the active site hydrogen bonds as a function of pH, of inhibitor, and of enzyme, along with the involvement or absence of ordered water, produces a large structural manifold of active site hydrogen bond motifs. Diverse examples of multicentered and two-centered short hydrogen bond arrays, both at and away from the active site, recently discovered in several protein crystal systems, suggest that short hydrogen bonds in proteins may be more common than has been recognized. The short hydrogen bond arrays resemble one another with respect to ionic nature, highly polar environment, multitude of associated ordinary hydrogen bonds, and disparate pK(a) values of participating groups. Comparison of structures and K(i) values of trypsin complexes at pH values where the multicentered short hydrogen bond arrays mediating inhibitor binding are present or absent indicate that these arrays have a minor effect on inhibitor potency. These features suggest little covalent nature within the short hydrogen bonds, despite their extraordinary shortness (as short as 2.0 A).


Subject(s)
Serine Proteinase Inhibitors/chemistry , Serine Proteinase Inhibitors/pharmacology , Binding Sites , Hydrogen Bonding , Hydrogen-Ion Concentration , Kinetics , Models, Molecular , Protein Conformation , Structure-Activity Relationship , Thrombin/antagonists & inhibitors , Thrombin/chemistry , Trypsin/chemistry , Trypsin Inhibitors/chemistry , Trypsin Inhibitors/pharmacology , Urokinase-Type Plasminogen Activator/antagonists & inhibitors , Urokinase-Type Plasminogen Activator/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...