Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Microorganisms ; 12(1)2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38257974

ABSTRACT

The Makgadikgadi Salt Pans are the remnants of a mega paleo-lake system in the central Kalahari, Botswana. Today, the Makgadikgadi Basin is an arid to semi-arid area receiving water of meteoric origin during the short, wet season. Large microbial mats, which support primary production, are formed due to desiccation during the dry season. This study aimed to characterise the microbial diversity of the microbial mats and the underlying sediment. The focus was the Ntwetwe Pan, located west of the Makgadikgadi Basin. Metagenomic analyses demonstrated that the mats consisted of a high relative abundance of Cyanobacteriota (synonym Cyanobacteria) (20.50-41.47%), Pseudomonadota (synonym Proteobacteria) (15.71 to 32.18%), and Actinomycetota (synonym Actinobacteria) (8.53-32.56%). In the underlying sediments, Pseudomonadota, Actinomycetota, and Euryarchaeota represented over 70% of the community. Localised fluctuations in water content and pH did not significantly affect the microbial diversity of the sediment or the mats.

2.
Rapid Commun Mass Spectrom ; 30(19): 2087-98, 2016 Oct 15.
Article in English | MEDLINE | ID: mdl-27472174

ABSTRACT

RATIONALE: Traditional investigation of bacteriohopanepolyols (BHPs) has relied on derivatisation by acetylation prior to gas chromatography/mass spectrometry (GC/MS) or liquid chromatography/MS (LC/MS) analysis. Here, modern chromatographic techniques (ultrahigh-performance liquid chromatography (UPLC)) and new column chemistries were tested to develop a method for BHP analysis without the need for derivatisation. METHODS: Bacterial culture and sedimentary lipid extracts were analysed using a Waters Acquity Xevo TQ-S triple quadrupole mass spectrometer in positive ion atmospheric pressure chemical ionisation (APCI) mode. Waters BEH C18 and ACE Excel C18 were the central columns evaluated using a binary solvent gradient with 0.1% formic acid in the polar solvent phase in order to optimise performance and selectivity. RESULTS: Non-amine BHPs and adenosylhopane showed similar performance on each C18 column; however, BHP-containing terminal amines were only identified eluting from the ultra-inert ACE Excel C18 column. APCI-MS/MS product ion scans revealed significant differences in fragmentation pathways from previous methods for acetylated compounds. The product ions used for targeted multiple reaction monitoring (MRM) are summarised. CONCLUSIONS: UPLC/MS/MS analysis using an ACE Excel C18 column produced superior separation for amine-containing BHPs and reduced run times from 60 to 9 min compared with previous methods. Unexpected variations in fragmentation pathways between structural subgroups must be taken into account when optimising MRM transitions for future quantitative studies. Copyright © 2016 John Wiley & Sons, Ltd.


Subject(s)
Chromatography, High Pressure Liquid/methods , Membrane Lipids/chemistry , Methylococcus capsulatus/chemistry , Methylosinus trichosporium/chemistry , Tandem Mass Spectrometry/methods , Membrane Lipids/metabolism , Methylococcus capsulatus/metabolism , Methylosinus trichosporium/metabolism , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL