Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Interface Focus ; 11(4): 20200064, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34123354

ABSTRACT

The study of long non-coding RNAs (lncRNAs), greater than 200 nucleotides, is central to understanding the development and progression of many complex diseases. Unlike proteins, the functionality of lncRNAs is only subtly encoded in their primary sequence. Current in-silico lncRNA annotation methods mostly rely on annotations inferred from interaction networks. But extensive experimental studies are required to build these networks. In this work, we present a graph-based machine learning method called FGGA-lnc for the automatic gene ontology (GO) annotation of lncRNAs across the three GO subdomains. We build upon FGGA (factor graph GO annotation), a computational method originally developed to annotate protein sequences from non-model organisms. In the FGGA-lnc version, a coding-based approach is introduced to fuse primary sequence and secondary structure information of lncRNA molecules. As a result, lncRNA sequences become sequences of a higher-order alphabet allowing supervised learning methods to assess individual GO-term annotations. Raw GO annotations obtained in this way are unaware of the GO structure and therefore likely to be inconsistent with it. The message-passing algorithm embodied by factor graph models overcomes this problem. Evaluations of the FGGA-lnc method on lncRNA data, from model and non-model organisms, showed promising results suggesting it as a candidate to satisfy the huge demand for functional annotations arising from high-throughput sequencing technologies.

2.
Biomolecules ; 10(3)2020 03 20.
Article in English | MEDLINE | ID: mdl-32244891

ABSTRACT

Single nucleotide variants (SNVs) occurring in a protein coding gene may disrupt its function in multiple ways. Predicting this disruption has been recognized as an important problem in bioinformatics research. Many tools, hereafter p-tools, have been designed to perform these predictions and many of them are now of common use in scientific research, even in clinical applications. This highlights the importance of understanding the semantics of their outputs. To shed light on this issue, two questions are formulated, (i) do p-tools provide similar predictions? (inner consistency), and (ii) are these predictions consistent with the literature? (outer consistency). To answer these, six p-tools are evaluated with exhaustive SNV datasets from the BRCA1 gene. Two indices, called K a l l and K s t r o n g , are proposed to quantify the inner consistency of pairs of p-tools while the outer consistency is quantified by standard information retrieval metrics. While the inner consistency analysis reveals that most of the p-tools are not consistent with each other, the outer consistency analysis reveals they are characterized by a low prediction performance. Although this result highlights the need of improving the prediction performance of individual p-tools, the inner consistency results pave the way to the systematic design of truly diverse ensembles of p-tools that can overcome the limitations of individual members.


Subject(s)
BRCA1 Protein , Computational Biology , Models, Genetic , Polymorphism, Single Nucleotide , BRCA1 Protein/genetics , BRCA1 Protein/metabolism , Humans
3.
BMC Genomics ; 19(Suppl 8): 860, 2018 Dec 11.
Article in English | MEDLINE | ID: mdl-30537925

ABSTRACT

BACKGROUND: In living organisms, small heat shock proteins (sHSPs) are triggered in response to stress situations. This family of proteins is large in plants and, in the case of tomato (Solanum lycopersicum), 33 genes have been identified, most of them related to heat stress response and to the ripening process. Transcriptomic and proteomic studies have revealed complex patterns of expression for these genes. In this work, we investigate the coregulation of these genes by performing a computational analysis of their promoter architecture to find regulatory motifs known as heat shock elements (HSEs). We leverage the presence of sHSP members that originated from tandem duplication events and analyze the promoter architecture diversity of the whole sHSP family, focusing on the identification of HSEs. RESULTS: We performed a search for conserved genomic sequences in the promoter regions of the sHSPs of tomato, plus several other proteins (mainly HSPs) that are functionally related to heat stress situations or to ripening. Several computational analyses were performed to build multiple sequence motifs and identify transcription factor binding sites (TFBS) homologous to HSF1AE and HSF21 in Arabidopsis. We also investigated the expression and interaction of these proteins under two heat stress situations in whole tomato plants and in protoplast cells, both in the presence and in the absence of heat shock transcription factor A2 (HsfA2). The results of these analyses indicate that different sHSPs are up-regulated depending on the activation or repression of HsfA2, a key regulator of HSPs. Further, the analysis of protein-protein interaction between the sHSP protein family and other heat shock response proteins (Hsp70, Hsp90 and MBF1c) suggests that several sHSPs are mediating alternative stress response through a regulatory subnetwork that is not dependent on HsfA2. CONCLUSIONS: Overall, this study identifies two regulatory motifs (HSF1AE and HSF21) associated with the sHSP family in tomato which are considered genomic HSEs. The study also suggests that, despite the apparent redundancy of these proteins, which has been linked to gene duplication, tomato sHSPs showed different up-regulation and different interaction patterns when analyzed under different stress situations.


Subject(s)
Gene Expression Regulation, Plant , Heat-Shock Proteins, Small/genetics , Nucleotide Motifs , Plant Proteins/genetics , Regulatory Sequences, Nucleic Acid , Solanum lycopersicum/genetics , Gene Duplication , Heat-Shock Proteins, Small/metabolism , Heat-Shock Response , Solanum lycopersicum/growth & development , Solanum lycopersicum/metabolism , Plant Proteins/metabolism , Promoter Regions, Genetic , Protein Interaction Maps
4.
Sci Rep ; 8(1): 7757, 2018 05 17.
Article in English | MEDLINE | ID: mdl-29773825

ABSTRACT

The GO-Cellular Component (GO-CC) ontology provides a controlled vocabulary for the consistent description of the subcellular compartments or macromolecular complexes where proteins may act. Current machine learning-based methods used for the automated GO-CC annotation of proteins suffer from the inconsistency of individual GO-CC term predictions. Here, we present FGGA-CC+, a class of hierarchical graph-based classifiers for the consistent GO-CC annotation of protein coding genes at the subcellular compartment or macromolecular complex levels. Aiming to boost the accuracy of GO-CC predictions, we make use of the protein localization knowledge in the GO-Biological Process (GO-BP) annotations to boost the accuracy of GO-CC prediction. As a result, FGGA-CC+ classifiers are built from annotation data in both the GO-CC and GO-BP ontologies. Due to their graph-based design, FGGA-CC+ classifiers are fully interpretable and their predictions amenable to expert analysis. Promising results on protein annotation data from five model organisms were obtained. Additionally, successful validation results in the annotation of a challenging subset of tandem duplicated genes in the tomato non-model organism were accomplished. Overall, these results suggest that FGGA-CC+ classifiers can indeed be useful for satisfying the huge demand of GO-CC annotation arising from ubiquitous high throughout sequencing and proteomic projects.


Subject(s)
Arabidopsis/metabolism , Computational Biology/methods , Drosophila melanogaster/metabolism , Gene Ontology , Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Solanum lycopersicum/metabolism , Animals , Databases, Protein , Molecular Sequence Annotation , Proteins/analysis , Proteomics , Software
5.
PLoS One ; 11(1): e0146986, 2016.
Article in English | MEDLINE | ID: mdl-26771463

ABSTRACT

As volume of genomic data grows, computational methods become essential for providing a first glimpse onto gene annotations. Automated Gene Ontology (GO) annotation methods based on hierarchical ensemble classification techniques are particularly interesting when interpretability of annotation results is a main concern. In these methods, raw GO-term predictions computed by base binary classifiers are leveraged by checking the consistency of predefined GO relationships. Both formal leveraging strategies, with main focus on annotation precision, and heuristic alternatives, with main focus on scalability issues, have been described in literature. In this contribution, a factor graph approach to the hierarchical ensemble formulation of the automated GO annotation problem is presented. In this formal framework, a core factor graph is first built based on the GO structure and then enriched to take into account the noisy nature of GO-term predictions. Hence, starting from raw GO-term predictions, an iterative message passing algorithm between nodes of the factor graph is used to compute marginal probabilities of target GO-terms. Evaluations on Saccharomyces cerevisiae, Arabidopsis thaliana and Drosophila melanogaster protein sequences from the GO Molecular Function domain showed significant improvements over competing approaches, even when protein sequences were naively characterized by their physicochemical and secondary structure properties or when loose noisy annotation datasets were considered. Based on these promising results and using Arabidopsis thaliana annotation data, we extend our approach to the identification of most promising molecular function annotations for a set of proteins of unknown function in Solanum lycopersicum.


Subject(s)
Drosophila melanogaster/genetics , Gene Ontology , Algorithms , Animals , Arabidopsis/genetics , Computational Biology , Solanum lycopersicum/genetics , Saccharomyces cerevisiae/genetics , Software
6.
PLoS One ; 10(10): e0140459, 2015.
Article in English | MEDLINE | ID: mdl-26492348

ABSTRACT

For many parallel applications of Next-Generation Sequencing (NGS) technologies short barcodes able to accurately multiplex a large number of samples are demanded. To address these competitive requirements, the use of error-correcting codes is advised. Current barcoding systems are mostly built from short random error-correcting codes, a feature that strongly limits their multiplexing accuracy and experimental scalability. To overcome these problems on sequencing systems impaired by mismatch errors, the alternative use of binary BCH and pseudo-quaternary Hamming codes has been proposed. However, these codes either fail to provide a fine-scale with regard to size of barcodes (BCH) or have intrinsic poor error correcting abilities (Hamming). Here, the design of barcodes from shortened binary BCH codes and quaternary Low Density Parity Check (LDPC) codes is introduced. Simulation results show that although accurate barcoding systems of high multiplexing capacity can be obtained with any of these codes, using quaternary LDPC codes may be particularly advantageous due to the lower rates of read losses and undetected sample misidentification errors. Even at mismatch error rates of 10(-2) per base, 24-nt LDPC barcodes can be used to multiplex roughly 2000 samples with a sample misidentification error rate in the order of 10(-9) at the expense of a rate of read losses just in the order of 10(-6).


Subject(s)
DNA Barcoding, Taxonomic/methods , Probability
SELECTION OF CITATIONS
SEARCH DETAIL
...