Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 131(4): 045001, 2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37566861

ABSTRACT

We demonstrate the generation of extreme-ultraviolet (XUV) free-electron laser (FEL) pulses with time-dependent polarization. To achieve polarization modulation on a femtosecond timescale, we combine two mutually delayed counterrotating circularly polarized subpulses from two cross-polarized undulators. The polarization profile of the pulses is probed by angle-resolved photoemission and above-threshold ionization of helium; the results agree with solutions of the time-dependent Schrödinger equation. The stability limit of the scheme is mainly set by electron-beam energy fluctuations, however, at a level that will not compromise experiments in the XUV. Our results demonstrate the potential to improve the resolution and element selectivity of methods based on polarization shaping and may lead to the development of new coherent control schemes for probing and manipulating core electrons in matter.

2.
J Chem Phys ; 157(16): 164705, 2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36319417

ABSTRACT

We report on carbon monoxide desorption and oxidation induced by 400 nm femtosecond laser excitation on the O/Ru(0001) surface probed by time-resolved x-ray absorption spectroscopy (TR-XAS) at the carbon K-edge. The experiments were performed under constant background pressures of CO (6 × 10-8 Torr) and O2 (3 × 10-8 Torr). Under these conditions, we detect two transient CO species with narrow 2π* peaks, suggesting little 2π* interaction with the surface. Based on polarization measurements, we find that these two species have opposing orientations: (1) CO favoring a more perpendicular orientation and (2) CO favoring a more parallel orientation with respect to the surface. We also directly detect gas-phase CO2 using a mass spectrometer and observe weak signatures of bent adsorbed CO2 at slightly higher x-ray energies than the 2π* region. These results are compared to previously reported TR-XAS results at the O K-edge, where the CO background pressure was three times lower (2 × 10-8 Torr) while maintaining the same O2 pressure. At the lower CO pressure, in the CO 2π* region, we observed adsorbed CO and a distribution of OC-O bond lengths close to the CO oxidation transition state, with little indication of gas-like CO. The shift toward "gas-like" CO species may be explained by the higher CO exposure, which blocks O adsorption, decreasing O coverage and increasing CO coverage. These effects decrease the CO desorption barrier through dipole-dipole interaction while simultaneously increasing the CO oxidation barrier.

3.
J Synchrotron Radiat ; 29(Pt 4): 969-977, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35787562

ABSTRACT

We report on the characterization of a novel extreme-ultraviolet polarimeter based on conical mirrors to simultaneously detect all the components of the electric field vector for extreme-ultraviolet radiation in the 45-90 eV energy range. The device has been characterized using a variable polarization source at the Elettra synchrotron, showing good performance in the ability to determine the radiation polarization. Furthermore, as a possible application of the device, Faraday spectroscopy and time-resolved experiments have been performed at the Fe M2,3-edge on an FeGd ferrimagnetic thin film using the FERMI free-electron laser source. The instrument is shown to be able to detect the small angular variation induced by an optical external stimulus on the polarization state of the light after interaction with magnetic thin film, making the device an appealing tool for magnetization dynamics research.

4.
Phys Rev Lett ; 128(7): 077401, 2022 Feb 18.
Article in English | MEDLINE | ID: mdl-35244431

ABSTRACT

We report on the experimental evidence of magnetic helicoidal dichroism, observed in the interaction of an extreme ultraviolet vortex beam carrying orbital angular momentum with a magnetic vortex. Numerical simulations based on classical electromagnetic theory show that this dichroism is based on the interference of light modes with different orbital angular momenta, which are populated after the interaction between light and the magnetic topology. This observation gives insight into the interplay between orbital angular momentum and magnetism and sets the framework for the development of new analytical tools to investigate ultrafast magnetization dynamics.

5.
Phys Rev Lett ; 127(1): 016802, 2021 Jul 02.
Article in English | MEDLINE | ID: mdl-34270277

ABSTRACT

We use a pump-probe scheme to measure the time evolution of the C K-edge x-ray absorption spectrum from CO/Ru(0001) after excitation by an ultrashort high-intensity optical laser pulse. Because of the short duration of the x-ray probe pulse and precise control of the pulse delay, the excitation-induced dynamics during the first picosecond after the pump can be resolved with unprecedented time resolution. By comparing with density functional theory spectrum calculations, we find high excitation of the internal stretch and frustrated rotation modes occurring within 200 fs of laser excitation, as well as thermalization of the system in the picosecond regime. The ∼100 fs initial excitation of these CO vibrational modes is not readily rationalized by traditional theories of nonadiabatic coupling of adsorbates to metal surfaces, e.g., electronic frictions based on first order electron-phonon coupling or transient population of adsorbate resonances. We suggest that coupling of the adsorbate to nonthermalized electron-hole pairs is responsible for the ultrafast initial excitation of the modes.

6.
Light Sci Appl ; 10(1): 92, 2021 Apr 28.
Article in English | MEDLINE | ID: mdl-33911069

ABSTRACT

Self-action nonlinearity is a key aspect - either as a foundational element or a detrimental factor - of several optical spectroscopies and photonic devices. Supercontinuum generation, wavelength converters, and chirped pulse amplification are just a few examples. The recent advent of Free Electron Lasers (FEL) fostered building on nonlinearity to propose new concepts and extend optical wavelengths paradigms for extreme ultraviolet (EUV) and X-ray regimes. No evidence for intrapulse dynamics, however, has been reported at such short wavelengths, where the light-matter interactions are ruled by the sharp absorption edges of core electrons. Here, we provide experimental evidence for self-phase modulation of femtosecond FEL pulses, which we exploit for fine self-driven spectral tunability by interaction with sub-micrometric foils of selected monoatomic materials. Moving the pulse wavelength across the absorption edge, the spectral profile changes from a non-linear spectral blue-shift to a red-shifted broadening. These findings are rationalized accounting for ultrafast ionization and delayed thermal response of highly excited electrons above and below threshold, respectively.

7.
Nature ; 578(7795): 386-391, 2020 02.
Article in English | MEDLINE | ID: mdl-32042171

ABSTRACT

Attosecond pulses are central to the investigation of valence- and core-electron dynamics on their natural timescales1-3. The reproducible generation and characterization of attosecond waveforms has been demonstrated so far only through the process of high-order harmonic generation4-7. Several methods for shaping attosecond waveforms have been proposed, including the use of metallic filters8,9, multilayer mirrors10 and manipulation of the driving field11. However, none of these approaches allows the flexible manipulation of the temporal characteristics of the attosecond waveforms, and they suffer from the low conversion efficiency of the high-order harmonic generation process. Free-electron lasers, by contrast, deliver femtosecond, extreme-ultraviolet and X-ray pulses with energies ranging from tens of microjoules to a few millijoules12,13. Recent experiments have shown that they can generate subfemtosecond spikes, but with temporal characteristics that change shot-to-shot14-16. Here we report reproducible generation of high-energy (microjoule level) attosecond waveforms using a seeded free-electron laser17. We demonstrate amplitude and phase manipulation of the harmonic components of an attosecond pulse train in combination with an approach for its temporal reconstruction. The results presented here open the way to performing attosecond time-resolved experiments with free-electron lasers.

8.
Nat Commun ; 11(1): 883, 2020 Feb 14.
Article in English | MEDLINE | ID: mdl-32060288

ABSTRACT

The recent development of ultrafast extreme ultraviolet (XUV) coherent light sources bears great potential for a better understanding of the structure and dynamics of matter. Promising routes are advanced coherent control and nonlinear spectroscopy schemes in the XUV energy range, yielding unprecedented spatial and temporal resolution. However, their implementation has been hampered by the experimental challenge of generating XUV pulse sequences with precisely controlled timing and phase properties. In particular, direct control and manipulation of the phase of individual pulses within an XUV pulse sequence opens exciting possibilities for coherent control and multidimensional spectroscopy, but has not been accomplished. Here, we overcome these constraints in a highly time-stabilized and phase-modulated XUV-pump, XUV-probe experiment, which directly probes the evolution and dephasing of an inner subshell electronic coherence. This approach, avoiding any XUV optics for direct pulse manipulation, opens up extensive applications of advanced nonlinear optics and spectroscopy at XUV wavelengths.

9.
Phys Chem Chem Phys ; 22(5): 2677-2684, 2020 Feb 07.
Article in English | MEDLINE | ID: mdl-31531435

ABSTRACT

The transient dynamics of carbon monoxide (CO) molecules on a Ru(0001) surface following femtosecond optical laser pump excitation has been studied by monitoring changes in the unoccupied electronic structure using an ultrafast X-ray free-electron laser (FEL) probe. The particular symmetry of perpendicularly chemisorbed CO on the surface is exploited to investigate how the molecular orientation changes with time by varying the polarization of the FEL pulses. The time evolution of spectral features corresponding to the desorption precursor state was well distinguished due to the narrow line-width of the C K-edge in the X-ray absorption (XA) spectrum, illustrating that CO molecules in the precursor state rotated freely and resided on the surface for several picoseconds. Most of the CO molecules trapped in the precursor state ultimately cooled back down to the chemisorbed state, while we estimate that ∼14.5 ± 4.9% of the molecules in the precursor state desorbed into the gas phase. It was also observed that chemisorbed CO molecules diffused over the metal surface from on-top sites toward highly coordinated sites. In addition, a new "vibrationally hot precursor" state was identified in the polarization-dependent XA spectra.

10.
Phys Rev Lett ; 123(21): 213904, 2019 Nov 22.
Article in English | MEDLINE | ID: mdl-31809175

ABSTRACT

Intense, mutually coherent beams of multiharmonic extreme ultraviolet light can now be created using seeded free-electron lasers, and the phase difference between harmonics can be tuned with attosecond accuracy. However, the absolute value of the phase is generally not determined. We present a method for determining precisely the absolute phase relationship of a fundamental wavelength and its second harmonic, as well as the amplitude ratio. Only a few easily calculated theoretical parameters are required in addition to the experimental data.

11.
J Synchrotron Radiat ; 26(Pt 5): 1523-1538, 2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31490140

ABSTRACT

Laser-slicing at a diffraction-limited storage ring light source in the soft X-ray region is investigated with theoretical and numerical modelling. It turns out that the slicing efficiency is favoured by the ultra-low beam emittance, and that slicing can be implemented without interference to the standard multi-bunch operation. Spatial and spectral separation of the sub-picosecond radiation pulse from a hundreds of picosecond-long background is achieved by virtue of 1:1 imaging of the radiation source. The spectral separation is enhanced when the radiator is a transverse gradient undulator. The proposed configuration applied to the Elettra 2.0 six-bend achromatic lattice envisages total slicing efficiency as high as 10-7, one order of magnitude larger than the demonstrated state-of-the-art, at the expense of pulse durations as long as 0.4 ps FWHM and average laser power as high as ∼40 W.

12.
Phys Rev Lett ; 122(14): 145702, 2019 Apr 12.
Article in English | MEDLINE | ID: mdl-31050465

ABSTRACT

We investigate the orthorhombic distortion and the structural dynamics of epitaxial MnAs layers on GaAs(001) using static and time-resolved x-ray diffraction. Laser-induced intensity oscillations of Bragg reflections allow us to identify the optical phonon associated with orthorhombic distortion and to follow its softening along the path towards an undistorted phase of hexagonal symmetry. The frequency of this mode falls in the THz range, in agreement with recent calculations. Incomplete softening suggests that the ß-γ transformation deviates from a purely second-order displacive transition.

13.
J Phys Chem A ; 123(7): 1295-1302, 2019 Feb 21.
Article in English | MEDLINE | ID: mdl-30668129

ABSTRACT

The initial deactivation pathways of gaseous 2-nitrophenol excited at 268 nm were investigated by time-resolved photoelectron spectroscopy (TRPES) with femtosecond-VUV light, produced by a monochromatized high harmonic generation source. TRPES allowed us to obtain new, valuable experimental information about the ultrafast excited-state dynamics of 2-nitrophenol in the gas phase. In accord with recent ab initio on-the-fly nonadiabatic molecular dynamic simulations, our results validate the occurrence of an ultrafast intersystem crossing leading to an intermediate state that decays on a subpicosecond time scale with a branched mechanisms. Two decay pathways are experimentally observed. One probably involves proton transfer, leading to the most stable triplet aci-form of 2-nitrophenol; the second pathway may involve OH rotation. We propose that following intersystem crossing, an ultrafast fragmentation channel leading to OH or HONO loss could also be operative.

14.
Nat Commun ; 7: 10343, 2016 Jan 13.
Article in English | MEDLINE | ID: mdl-26757813

ABSTRACT

The advent of free-electron laser (FEL) sources delivering two synchronized pulses of different wavelengths (or colours) has made available a whole range of novel pump-probe experiments. This communication describes a major step forward using a new configuration of the FERMI FEL-seeded source to deliver two pulses with different wavelengths, each tunable independently over a broad spectral range with adjustable time delay. The FEL scheme makes use of two seed laser beams of different wavelengths and of a split radiator section to generate two extreme ultraviolet pulses from distinct portions of the same electron bunch. The tunability range of this new two-colour source meets the requirements of double-resonant FEL pump/FEL probe time-resolved studies. We demonstrate its performance in a proof-of-principle magnetic scattering experiment in Fe-Ni compounds, by tuning the FEL wavelengths to the Fe and Ni 3p resonances.

15.
Sci Rep ; 5: 8120, 2015 Jan 29.
Article in English | MEDLINE | ID: mdl-25631753

ABSTRACT

Spintronic devices currently rely on magnetization control by external magnetic fields or spin-polarized currents. Developing temperature-driven magnetization control has potential for achieving enhanced device functionalities. Recently, there has been much interest in thermally induced magnetisation switching (TIMS), where the temperature control of intrinsic material properties drives a deterministic switching without applying external fields. TIMS, mainly investigated in rare-earth-transition-metal ferrimagnets, has also been observed in epitaxial Fe/MnAs/GaAs(001), where it stems from a completely different physical mechanism. In Fe/MnAs temperature actually modifies the surface dipolar fields associated with the MnAs magnetic microstructure. This in turn determines the effective magnetic field acting on the Fe overlayer. In this way one can reverse the Fe magnetization direction by performing thermal cycles at ambient temperatures. Here we use element selective magnetization measurements to demonstrate that various magnetic configurations of the Fe/MnAs/GaAs(001) system are stabilized predictably by acting on the thermal cycle parameters and on the presence of a bias field. We show in particular that the maximum temperature reached during the cycle affects the final magnetic configuration. Our findings show that applications are possible for fast magnetization switching, where local temperature changes are induced by laser excitations.

16.
Opt Express ; 21(19): 22728-41, 2013 Sep 23.
Article in English | MEDLINE | ID: mdl-24104160

ABSTRACT

We present the experimental demonstration of a method for generating two spectrally and temporally separated pulses by an externally seeded, single-pass free-electron laser operating in the extreme-ultraviolet spectral range. Our results, collected on the FERMI@Elettra facility and confirmed by numerical simulations, demonstrate the possibility of controlling both the spectral and temporal features of the generated pulses. A free-electron laser operated in this mode becomes a suitable light source for jitter-free, two-colour pump-probe experiments.

17.
Opt Express ; 20(9): 9769-76, 2012 Apr 23.
Article in English | MEDLINE | ID: mdl-22535069

ABSTRACT

We present a method for imaging magnetic domains via x-ray Fourier transform holography at linearly polarized sources. Our approach is based on the separation of holographic mask and sample and on the Faraday rotation induced on the reference wave. We compare images of perpendicular magnetic domains obtained with either linearly or circularly polarized x-rays and discuss the relevance of this method to future experiments at free-electron laser and high-harmonic-generation sources.


Subject(s)
Holography/instrumentation , Image Enhancement/instrumentation , Radiometry/instrumentation , Refractometry/instrumentation , Equipment Design , Equipment Failure Analysis , Fourier Analysis , Magnetic Fields , X-Rays
18.
Rev Sci Instrum ; 82(4): 043711, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21529017

ABSTRACT

We present a compact modular apparatus with a flexible design that will be operated at the DiProI beamline of the Fermi@Elettra free electron laser (FEL) for performing static and time-resolved coherent diffraction imaging experiments, taking advantage of the full coherence and variable polarization of the short seeded FEL pulses. The apparatus has been assembled and the potential of the experimental setup is demonstrated by commissioning tests with coherent synchrotron radiation. This multipurpose experimental station will be open to general users after installation at the Fermi@Elettra free electron laser in 2011.


Subject(s)
Electrons , Lasers , Scattering, Radiation , Equipment Design , Light , Nanotechnology , Photons
19.
Rev Sci Instrum ; 78(4): 043702, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17477665

ABSTRACT

We have developed a setup for measuring holographically formed interference patterns using an integrated sample-mask design. The direct space image of the sample is obtained via a two-dimensional Fourier transform of the X-ray diffraction pattern. We present the details of our setup, commenting on the influence of geometrical parameters on the imaging capabilities. As an example, we present and discuss the results of test experiments on a patterned Co film.


Subject(s)
Fourier Analysis , X-Ray Diffraction , Diagnostic Imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...