Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
Biol Psychiatry Glob Open Sci ; 4(3): 100306, 2024 May.
Article in English | MEDLINE | ID: mdl-38628385

ABSTRACT

Background: Accumulating evidence underscores the pivotal role of heightened inflammation in the pathophysiology of stress-related diseases, but the underlying mechanisms remain elusive. The complement system, a key effector of the innate immune system, produces the C5-cleaved activation product C5a upon activation, initiating inflammatory responses through the canonical C5a receptor 1 (C5aR1). While C5aR1 is expressed in stress-responsive brain regions, its role in stress responsiveness remains unknown. Methods: To investigate C5a-C5aR1 signaling in stress responses, mice underwent acute and chronic stress paradigms. Circulating C5a levels and messenger RNA expression of C5aR1 in the hippocampus and adrenal gland were measured. C5aR1-deficient mice were used to elucidate the effects of disrupted C5a-C5aR1 signaling across behavioral, hormonal, metabolic, and inflammation parameters. Results: Chronic restraint stress elevated circulating C5a levels while reducing C5aR1 messenger RNA expression in the hippocampus and adrenal gland. Notably, the absence of C5aR1 signaling enhanced adrenal sensitivity to adrenocorticotropic hormone, concurrently reducing pituitary adrenocorticotropic hormone production and enhancing the response to acute stress. C5aR1-deficient mice exhibited attenuated reductions in locomotor activity and body weight under chronic stress. Additionally, these mice displayed increased glucocorticoid receptor sensitivity and disrupted glucose and insulin homeostasis. Chronic stress induced an increase in C5aR1-expressing microglia in the hippocampus, a response mitigated in C5aR1-deficient mice. Conclusions: C5a-C5aR1 signaling emerges as a key metabolic regulator during stress, suggesting that complement activation and dysfunctional C5aR1 signaling may contribute to neuroinflammatory phenotypes in stress-related disorders. The results advocate for further exploration of complement C5aR1 as a potential therapeutic target for stress-related conditions.


How the immune system, particularly the complement system, influences responses to stress has not been fully clear. In this study, we focus on C5a-C5aR1 signaling, a part of the immune system, and found that it significantly affects stress-related reactions in mice. In chronic stress, we observed increased inflammation, altered hormonal responses, and disrupted metabolic regulation. Mice lacking C5aR1 showed reduced stress-induced behavioral changes, indicating that this receptor may play a vital role in modulating the stress response. Understanding these immune mechanisms sheds light on stress-related disorders and may open avenues for therapeutic interventions.

2.
Mol Neurobiol ; 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38252383

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a progressive motor neuron disease characterised by the deposition of aggregated proteins including TAR DNA-binding protein 43 (TDP-43) in vulnerable motor neurons and the brain. Extracellular vesicles (EVs) facilitate the spread of neurodegenerative diseases and can be easily accessed in the bloodstream. This study aimed to identify a panel of EV miRNAs that can capture the pathology occurring in the brain and peripheral circulation. EVs were isolated from the cortex (BDEVs) and serum (serum EVs) of 3 month-old and 6-month-old TDP-43*Q331K and TDP-43*WT mice. Following characterisation and miRNA isolation, the EVs underwent next-generation sequencing where 24 differentially packaged miRNAs were identified in the TDP-43*Q331K BDEVs and 7 in the TDP-43*Q331K serum EVs. Several miRNAs, including miR-183-5p, were linked to ALS. Additionally, miR-122-5p and miR-486b-5p were identified in both panels, demonstrating the ability of the serum EVs to capture the dysregulation occurring in the brain. This is the first study to identify miRNAs common to both the serum EVs and BDEVs in a mouse model of ALS.

3.
Open Biol ; 13(9): 230171, 2023 09.
Article in English | MEDLINE | ID: mdl-37699519

ABSTRACT

Alterations in the neuromuscular system underlie several neuromuscular diseases and play critical roles in the development of sarcopenia, the age-related loss of muscle mass and function. Mammalian Myostatin (MST) and GDF11, members of the TGF-ß superfamily of growth factors, are powerful regulators of muscle size in both model organisms and humans. Myoglianin (MYO), the Drosophila homologue of MST and GDF11, is a strong inhibitor of synaptic function and structure at the neuromuscular junction in flies. Here, we identified Plum, a transmembrane cell surface protein, as a modulator of MYO function in the larval neuromuscular system. Reduction of Plum in the larval body-wall muscles abolishes the previously demonstrated positive effect of attenuated MYO signalling on both muscle size and neuromuscular junction structure and function. In addition, downregulation of Plum on its own results in decreased synaptic strength and body weight, classifying Plum as a (novel) regulator of neuromuscular function and body (muscle) size. These findings offer new insights into possible regulatory mechanisms behind ageing- and disease-related neuromuscular dysfunctions in humans and identify potential targets for therapeutic interventions.


Subject(s)
Drosophila melanogaster , Prunus domestica , Animals , Humans , Aging , Bone Morphogenetic Proteins , Down-Regulation , Drosophila , Growth Differentiation Factors , Larva , Mammals
4.
PLoS Pathog ; 19(4): e1011309, 2023 04.
Article in English | MEDLINE | ID: mdl-37104170

ABSTRACT

Prion diseases, also known as transmissible spongiform encephalopathies, are rare, progressive, and fatal neurodegenerative disorders, which are caused by the accumulation of the misfolded cellular prion protein (PrPC). The resulting cytotoxic prion species, referred to as the scrapie prion isoform (PrPSc), assemble in aggregates and interfere with neuronal pathways, ultimately rendering neurons dysfunctional. As the prion protein physiologically interacts with redox-active metals, an altered redox balance within the cell can impact these interactions, which may lead to and facilitate further misfolding and aggregation. The initiation of misfolding and the aggregation processes will, in turn, induce microglial activation and neuroinflammation, which leads to an imbalance in cellular redox homeostasis and enhanced redox stress. Potential approaches for therapeutics target redox signalling, and this review illustrates the pathways involved in the above processes.


Subject(s)
Prion Diseases , Prions , Scrapie , Animals , Sheep , Prion Proteins/metabolism , Prions/metabolism , Scrapie/pathology , Oxidation-Reduction
5.
Mol Cell Neurosci ; 124: 103820, 2023 03.
Article in English | MEDLINE | ID: mdl-36736750

ABSTRACT

Small non-coding miRNA act as key regulators of several physiological processes due to their ability to interact with numerous target mRNA within a network. Whilst several miRNA can act in concert to regulate target mRNA expression, miR-146a has emerged as a critical modulator of inflammation by targeting key upstream signalling proteins of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway and reductions in this miRNA have been observed in several neurological and neurodegenerative disorders. However, a targeted assessment of behaviour and neural tissues following the loss of miR-146a has not been documented. In this study, we examined the behavioural and neuroinflammatory phenotype of mice lacking miR-146a to determine the role of this miRNA in neurological function. Adult miR-146a-/- mice displayed no overt developmental phenotype with the exception of enlarged spleens. Behavioural testing revealed a mild but significant reduction in exploratory locomotor activity and increase in anxiety-like behaviour, with no changes in short-term spatial memory, fear conditioning, or sensorimotor gating. In the brain, the lack of miR-146a resulted in a significant compensatory miR-155 expression with no significant changes in expression of the target Interleukin 1 Receptor Associated Kinase (Irak) gene family. Despite these effects on upstream NF-κB mediators, downstream expression of cytokine and chemokine messengers was significantly elevated in miR-146a-/- mice compared to wild-type controls. Moreover, this increase in inflammatory cytokines was observed alongside an induction of oxidative stress, driven in part by nicotinamide adenine dinucleotide phosphate (NADPH)-oxidase, and included reduced thiol antioxidant concentrations and increased oxidised protein carbonyl concentrations. In female miR-146a mice, this increase in oxidative stress resulted in an increased expression of superoxide dismutase 1 (SOD1). Together, this suggests miR-146a plays a key role in regulating inflammation even in the absence of inflammatory stimuli and reduced levels of this miRNA have the capacity to induce limited behavioural effects whilst exacerbating both inflammation and oxidative stress in the brain.


Subject(s)
MicroRNAs , NF-kappa B , Animals , Female , Mice , Cytokines/metabolism , Inflammation , MicroRNAs/genetics , MicroRNAs/metabolism , Neuroinflammatory Diseases , NF-kappa B/metabolism , Oxidative Stress , RNA, Messenger/metabolism , Signal Transduction
6.
Dev Psychobiol ; 65(1): e22347, 2023 01.
Article in English | MEDLINE | ID: mdl-36567651

ABSTRACT

Exercise has been shown to be beneficial in reducing symptoms of affective disorders and to increase the expression of brain-derived neurotrophic factor (BDNF). The BDNF Val66Met polymorphism is associated with reduced activity-dependent BDNF release and increased risk for anxiety and depression. Male and female Val66Met rats were given access to running wheels from 3 weeks of age and compared to sedentary controls. Anxiety- and depression-like behaviors were measured in adulthood using the elevated plus maze (EPM), open field (OF), and forced swim test (FST). Expression of BDNF and a number of stress-related genes, the glucocorticoid receptor (Nr3c1), serum/glucocorticoid-regulated kinase 1 (Sgk1), and FK506 binding protein 51 (Fkbp5) in the hippocampus were also measured. Rats given access to running wheels developed high levels of voluntary exercise, decreased open-arm time on the EPM and center-field time in the OF, reduced overall exploratory activity in the open field, and increased immobility time in the FST with no differences between genotypes. Chronic exercise induced a significant increase in Bdnf mRNA and BDNF protein levels in the hippocampus with some of these effects being genotype specific. Exercise decreased the expression of Nr3c1 and Sgk1, but increased the expression of Fkbp5. These results suggest that chronic running-wheel exercise from adolescence increased anxiety and depression-like phenotypes in adulthood, independent of BDNF Val66Met genotype. Further studies are required to confirm that increased indices of anxiety-like behavior are independent from reduced overall locomotor activity.


Subject(s)
Anxiety , Brain-Derived Neurotrophic Factor , Depression , Motor Activity , Animals , Female , Male , Rats , Anxiety/genetics , Anxiety/metabolism , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Depression/genetics , Depression/metabolism , Genotype , Glucocorticoids , Hippocampus/metabolism , Motor Activity/genetics , Motor Activity/physiology , Phenotype , Stress, Physiological/genetics , Stress, Physiological/physiology , Stress, Psychological/genetics , Stress, Psychological/metabolism
7.
Cell Tissue Res ; 392(1): 247-267, 2023 Apr.
Article in English | MEDLINE | ID: mdl-35394216

ABSTRACT

Prion diseases (PrD) or transmissible spongiform encephalopathies (TSE) are invariably fatal and pathogenic neurodegenerative disorders caused by the self-propagated misfolding of cellular prion protein (PrPC) to the neurotoxic pathogenic form (PrPTSE) via a yet undefined but profoundly complex mechanism. Despite several decades of research on PrD, the basic understanding of where and how PrPC is transformed to the misfolded, aggregation-prone and pathogenic PrPTSE remains elusive. The primary clinical hallmarks of PrD include vacuolation-associated spongiform changes and PrPTSE accumulation in neural tissue together with astrogliosis. The difficulty in unravelling the disease mechanisms has been related to the rare occurrence and long incubation period (over decades) followed by a very short clinical phase (few months). Additional challenge in unravelling the disease is implicated to the unique nature of the agent, its complexity and strain diversity, resulting in the heterogeneity of the clinical manifestations and potentially diverse disease mechanisms. Recent advances in tissue isolation and processing techniques have identified novel means of intercellular communication through extracellular vesicles (EVs) that contribute to PrPTSE transmission in PrD. This review will comprehensively discuss PrPTSE transmission and neurotoxicity, focusing on the role of EVs in disease progression, biomarker discovery and potential therapeutic agents for the treatment of PrD.


Subject(s)
Extracellular Vesicles , Prion Diseases , Prions , Humans , Prion Diseases/diagnosis , Prion Diseases/therapy , Prion Diseases/metabolism , Prions/metabolism , Prion Proteins/metabolism , Extracellular Vesicles/metabolism
8.
Free Radic Biol Med ; 192: 182-190, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36170956

ABSTRACT

Neurodegenerative diseases are associated with a multitude of dysfunctional cellular pathways. One major contributory factor is a redox stress challenge during the development of several protein misfolding conditions including Alzheimer's (AD), Parkinson's disease (PD), and less common conditions such as Creutzfeldt Jakob disease (CJD). CJD is caused by misfolding of the neuronal prion protein and is characterised by a neurotoxic unfolded protein response involving chronic endoplasmic reticulum stress, reduced protein translation and spongiosis leading subsequently to synaptic and neuronal loss. Here we have characterised prion disease in mice to assess redox stress components including nitrergic and oxidative markers associated with neuroinflammatory activation. Aberrant regulation of the homeostasis of several redox metals contributes to the overall cellular redox stress and we have identified altered levels of iron, copper, zinc, and manganese in the hippocampus of prion diseased mice. Our data show that early in disease, there is evidence for oxidative stress in conjunction with reduced antioxidant superoxide dismutase mRNA and protein expression. Moreover, expression of divalent metal transporter proteins was reduced for Atp7b, Atox1, Slc11a2, Slc39a14 at 6-7 weeks but increased for Slc39a14 and Mt1 at 10 weeks of disease. Our data present evidence for a strong pro-oxidant environment and altered redox metal homeostasis in early disease pathology which both may be contributory factors to aggravating this protein misfolding disease.


Subject(s)
Creutzfeldt-Jakob Syndrome , Prion Diseases , Prions , Animals , Antioxidants/metabolism , Cation Transport Proteins , Copper , Creutzfeldt-Jakob Syndrome/pathology , Homeostasis , Iron , Manganese , Metals/metabolism , Mice , Oxidation-Reduction , Prion Diseases/genetics , Prion Diseases/metabolism , Prion Diseases/pathology , Prion Proteins/metabolism , Prions/metabolism , RNA, Messenger/metabolism , Reactive Oxygen Species , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , Zinc
9.
Article in English | MEDLINE | ID: mdl-35337859

ABSTRACT

Sensitization of dopaminergic activity has been suggested as an underlying mechanism in the psychotic symptoms of schizophrenia. Adolescent stress and chronic abuse of methamphetamine (Meth) are well-known risk factors for psychosis and schizophrenia; however it remains unknown how these factors compare in terms of dopaminergic behavioural sensitization in adulthood. In addition, while Brain-Derived Neurotrophic Factor (BDNF) has been implicated in dopaminergic activity and schizophrenia, its role in behavioural sensitization remains unclear. In this study we therefore compared the effect of chronic adolescent treatment with the stress hormone, corticosterone (Cort), or with Meth, on drug-induced locomotor hyperactivity and disruption of prepulse inhibition in adulthood in BDNF heterozygous mice and their wild-type controls, as well as on dopamine receptor gene expression. Between 6 and 9 weeks of age, the animals either received Cort in the drinking water or were treated with an escalating Meth dose protocol. In adulthood, Cort-pretreated mice showed significantly reduced Meth-induced locomotor hyperactivity compared to vehicle-pretreated mice. In contrast, Meth hyperlocomotion was significantly enhanced in animals pretreated with the drug in adolescence. There were no effects of either pretreatment on prepulse inhibition. BDNF Het mice showed greater Meth-induced hyperlocomotion and lower prepulse inhibition than WT mice. There were no effects of either pretreatment on D1 or D2 gene expression in either the dorsal or ventral striatum, while D3 mRNA was shown to be reduced in male mice only irrespective of genotype. These results suggest that in adolescence, chronically elevated glucocorticoid levels, a component of chronic stress, do not cause dopaminergic sensitization adulthood, in contrast to the effect of chronic Meth treatment in the same age period. BDNF does not appear to be involved in the effects of chronic Cort or chronic Meth.


Subject(s)
Methamphetamine , Animals , Brain-Derived Neurotrophic Factor/metabolism , Corticosterone/pharmacology , Dopamine , Glucocorticoids , Male , Methamphetamine/pharmacology , Mice , Mice, Inbred C57BL , Prepulse Inhibition
10.
Transl Psychiatry ; 12(1): 93, 2022 03 07.
Article in English | MEDLINE | ID: mdl-35256586

ABSTRACT

The common brain-derived neurotrophic factor (BDNF) Val66Met polymorphism is associated with reduced activity-dependent BDNF release and increased risk for anxiety disorders and PTSD. Here we behaviorally phenotyped a novel Val66Met rat model with an equivalent valine to methionine substitution in the rat Bdnf gene (Val68Met). In a three-day fear conditioning protocol of fear learning and extinction, adult rats with the Met/Met genotype demonstrated impaired fear memory compared to Val/Met rats and Val/Val controls, with no genotype differences in fear learning or extinction. This deficit in fear memory occurred irrespective of the sex of the animals and was not seen in adolescence (4 weeks of age). There were no changes in open-field locomotor activity or anxiety measured in the elevated plus maze (EPM) nor in other types of memory measured using the novel-object recognition test or Y-maze. BDNF exon VI expression in the dorsal hippocampus was higher and BDNF protein level in the ventral hippocampus was lower in female Val/Met rats than female Val/Val rats, with no other genotype differences, including in total BDNF, BDNF long, or BDNF IV mRNA. These data suggest a specific role for the BDNF Met/Met genotype in fear memory in rats. Further studies are required to investigate gene-environment interactions in this novel animal model.


Subject(s)
Brain-Derived Neurotrophic Factor , Polymorphism, Single Nucleotide , Animals , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Fear , Female , Genotype , Hippocampus/metabolism , Rats
11.
Neuromolecular Med ; 24(4): 385-391, 2022 12.
Article in English | MEDLINE | ID: mdl-35181852

ABSTRACT

Increasing evidence suggests neuroinflammation is a highly coordinated response involving multiple cell types and utilising several different forms of cellular communication. In addition to the well documented cytokine and chemokine messengers, extracellular vesicles (EVs) have emerged as key regulators of the inflammatory response. EVs act as vectors of intercellular communication, capable of travelling between different cells and tissues to deliver selectively packaged protein, miRNA, and lipids from the parent cell. During neuroinflammation, EVs transmit specific inflammatory mediators, particularly from microglia, to promote inflammatory resolution. This mini-review will highlight the novel neuroinflammatory mechanisms contributing to the biogenesis and selective packaging of EVs.


Subject(s)
Extracellular Vesicles , MicroRNAs , Cell Communication , Microglia , MicroRNAs/genetics , MicroRNAs/metabolism , Cytokines/metabolism
12.
Channels (Austin) ; 15(1): 666-679, 2021 12.
Article in English | MEDLINE | ID: mdl-34802368

ABSTRACT

Nitric oxide (NO) signaling in the brain provides a wide range of functional properties in response to neuronal activity. NO exerts its effects through different signaling pathways, namely, through the canonical soluble guanylyl cyclase-mediated cGMP production route and via post-translational protein modifications. The latter pathways comprise cysteine S-nitrosylation and 3-nitrotyrosination of distinct tyrosine residues. Many ion channels are targeted by one or more of these signaling routes, which leads to their functional regulation under physiological conditions or facilities their dysfunction leading to channelopathies in many pathologies. The resulting alterations in ion channel function changes neuronal excitability, synaptic transmission, and action potential propagation. Transient and activity-dependent NO production mediates reversible ion channel modifications via cGMP and S-nitrosylation signaling, whereas more pronounced and longer-term NO production during conditions of elevated oxidative stress leads to increasingly cumulative and irreversible protein 3-nitrotyrosination. The complexity of this regulation and vast variety of target ion channels and their associated functional alterations presents a challenging task in assessing and understanding the role of NO signaling in physiology and disease.


Subject(s)
Neurons , Synaptic Transmission , Ion Channels , Neurons/metabolism , Nitric Oxide/metabolism , Signal Transduction
13.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Article in English | MEDLINE | ID: mdl-33653950

ABSTRACT

Several neurodegenerative diseases associated with protein misfolding (Alzheimer's and Parkinson's disease) exhibit oxidative and nitrergic stress following initiation of neuroinflammatory pathways. Associated nitric oxide (NO)-mediated posttranslational modifications impact upon protein functions that can exacerbate pathology. Nonenzymatic and irreversible glycation signaling has been implicated as an underlying pathway that promotes protein misfolding, but the direct interactions between both pathways are poorly understood. Here we investigated the therapeutic potential of pharmacologically suppressing neuroinflammatory NO signaling during early disease progression of prion-infected mice. Mice were injected daily with an NO synthase (NOS) inhibitor at early disease stages, hippocampal gene and protein expression levels of oxidative and nitrergic stress markers were analyzed, and electrophysiological characterization of pyramidal CA1 neurons was performed. Increased neuroinflammatory signaling was observed in mice between 6 and 10 wk postinoculation (w.p.i.) with scrapie prion protein. Their hippocampi were characterized by enhanced nitrergic stress associated with a decline in neuronal function by 9 w.p.i. Daily in vivo administration of the NOS inhibitor L-NAME between 6 and 9 w.p.i. at 20 mg/kg prevented the functional degeneration of hippocampal neurons in prion-diseased mice. We further found that this intervention in diseased mice reduced 3-nitrotyrosination of triose-phosphate isomerase, an enzyme involved in the formation of disease-associated glycation. Furthermore, L-NAME application led to a reduced expression of the receptor for advanced glycation end-products and the diminished accumulation of hippocampal prion misfolding. Our data suggest that suppressing neuroinflammatory NO signaling slows functional neurodegeneration and reduces nitrergic and glycation-associated cellular stress.


Subject(s)
CA1 Region, Hippocampal/metabolism , Neurons/metabolism , Nitric Oxide/metabolism , Prion Diseases/metabolism , Signal Transduction , Animals , Mice , Mice, Transgenic , Nitric Oxide/genetics , Prion Diseases/genetics
15.
Antioxidants (Basel) ; 11(1)2021 Dec 29.
Article in English | MEDLINE | ID: mdl-35052588

ABSTRACT

Essential metals such as copper, iron, and zinc are cofactors in various biological processes including oxygen utilisation, cell growth, and biomolecular synthesis. The homeostasis of these essential metals is carefully controlled through a system of protein transporters involved in the uptake, storage, and secretion. Some metal ions can be transformed by processes including reduction/oxidation (redox) reactions, and correspondingly, the breakdown of metal ion homeostasis can lead to formation of reactive oxygen and nitrogen species. We have previously demonstrated rapid biochemical responses to stress involving alterations in the redox state to generate free radicals and the resultant oxidative stress. However, the effects of stress on redox-active metals including iron and copper and redox-inert zinc have not been well characterised. Therefore, this study aims to examine the changes in these essential metals following exposure to short-term repeated stress, and to further elucidate the alterations in metal homeostasis through expression analysis of different metal transporters. Outbred male Wistar rats were exposed to unrestrained (control), 1 day, or 3 days of 6 h restraint stress (n = 8 per group). After the respective stress treatment, blood and liver samples were collected for the analysis of biometal concentrations and relative gene expression of metal transporter and binding proteins. Exposure to repeated restraint stress was highly effective in causing hepatic redox imbalance. Stress was also shown to induce hepatic metal redistribution, while modulating the mRNA levels of key metal transporters. Overall, this study is the first to characterise the gene expression profile of metal homeostasis following stress and provide insight into the changes occurring prior to the onset of chronic stress conditions.

16.
Biochimie ; 180: 30-42, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33122103

ABSTRACT

Bidirectional communication between the neuroendocrine stress and immune systems permits classically anti-inflammatory glucocorticoids to exert pro-inflammatory effects in specific cells and tissues. Liver macrophages/Kupffer cells play a crucial role in initiating inflammatory cascades mediated by the release of pro-inflammatory cytokines following tissue injury. However, the effects of repeated acute psychological stress on hepatic inflammatory phenotype and macrophage activation state remains poorly understood. We have utilised a model of repeated acute stress in rodents to observe the changes in hepatic inflammatory phenotype, including anti-inflammatory vitamin D status, in addition to examining markers of classically and alternatively-activated macrophages. Male Wistar rats were subjected to control conditions or 6 h of restraint stress applied for 1 or 3 days (n = 8 per group) after which plasma concentrations of stress hormone, enzymes associated with liver damage, and vitamin D status were examined, in addition to hepatic expression of pro- and anti-inflammatory markers. Stress increased glucocorticoids and active vitamin D levels in addition to expression of glucocorticoid alpha/beta receptor, whilst changes in circulating hepatic enzymes indicated sustained liver damage. A pro-inflammatory response was observed in liver tissues following stress, and inducible nitric oxide synthase being observed within hepatic macrophage/Kupffer cells. Together, this suggests that stress preferentially induces a pro-inflammatory response in the liver.


Subject(s)
Hepatitis/metabolism , Hepatitis/physiopathology , Macrophage Activation/physiology , Stress, Psychological/blood , Stress, Psychological/physiopathology , Animals , Biomarkers , Cytokines/metabolism , Kupffer Cells/metabolism , Male , NF-kappa B/metabolism , Nitric Oxide Synthase Type II/metabolism , PPAR gamma/metabolism , Rats, Wistar , Receptors, Glucocorticoid/genetics , Receptors, Interleukin-8B/metabolism , Vitamin D/metabolism
17.
Antioxidants (Basel) ; 9(9)2020 Sep 11.
Article in English | MEDLINE | ID: mdl-32932938

ABSTRACT

Hepatic glutathione synthesis and antioxidant protection are critically important for efficient detoxification processes in response to metabolic challenges. However, this biosynthetic pathway, regulated by nuclear factor (erythroid-derived 2)-like 2 (Nrf2), previously demonstrated paradoxical repression following exposure to glucocorticoid stress hormones in cultured hepatic cells. Therefore, the present study used an in vivo model of sub-acute psychological stress to investigate the relationship between hepatic corticosteroid regulation and antioxidant systems. Male Wistar rats were kept under control conditions or subjected to six hours of restraint stress applied for 1 or 3 days (n = 8 per group) after which the liver was isolated for assays of oxidative/nitrosative status and expression of corticosteroid regulatory and Nrf2-antioxidant response element pathway members. A single stress exposure produced a significant increase in the expression of corticosterone reactivator, 11-beta-hydroxysteroid dehydrogenase 1 (11ß-Hsd1), while the 11ß-Hsd2 isozyme and corticosteroid-binding globulin were down-regulated following stress, indicative of an elevated availability of active corticosterone. Exposure to restraint significantly decreased hepatic concentrations of total cysteine thiols and the antioxidant reduced glutathione on Day 1 and increased 3-nitrotyrosinated and carbonylated proteins on Day 3, suggestive of oxidative/nitrosative stress in the liver following stress exposure. Conversely, there was a sustained down-regulation of Nrf2 mRNA and protein in addition to significant reductions in downstream glutamate-cysteine ligase catalytic subunit (Gclc), the rate-limiting enzyme in glutathione synthesis, on Day 1 and 3 of stress treatment. Interestingly, other antioxidant genes including superoxide dismutase 1 and 2, and glutathione peroxidase 4 were significantly up-regulated following an episode of restraint stress. In conclusion, the results of the present study indicate that increased expression of 11ß-Hsd1, indicative of elevated tissue glucocorticoid concentrations, may impair the Nrf2-dependent antioxidant response.

19.
Front Mol Neurosci ; 12: 86, 2019.
Article in English | MEDLINE | ID: mdl-31040766

ABSTRACT

Many neurodegenerative conditions and age-related neuropathologies are associated with increased levels of reactive oxygen species (ROS). The cap "n" collar (CncC) family of transcription factors is one of the major cellular system that fights oxidative insults, becoming activated in response to oxidative stress. This transcription factor signaling is conserved from metazoans to human and has a major developmental and disease-associated relevance. An important mammalian member of the CncC family is nuclear factor erythroid 2-related factor 2 (Nrf2) which has been studied in numerous cellular systems and represents an important target for drug discovery in different diseases. CncC is negatively regulated by Kelch-like ECH associated protein 1 (Keap1) and this interaction provides the basis for a homeostatic control of cellular antioxidant defense. We have utilized the Drosophila model system to investigate the roles of CncC signaling on longevity, neuronal function and circadian rhythm. Furthermore, we assessed the effects of CncC function on larvae and adult flies following exposure to stress. Our data reveal that constitutive overexpression of CncC modifies synaptic mechanisms that positively impact on neuronal function, and suppression of CncC inhibitor, Keap1, shows beneficial phenotypes on synaptic function and longevity. Moreover, supplementation of antioxidants mimics the effects of augmenting CncC signaling. Under stress conditions, lack of CncC signaling worsens survival rates and neuronal function whilst silencing Keap1 protects against stress-induced neuronal decline. Interestingly, overexpression and RNAi-mediated downregulation of CncC have differential effects on sleep patterns possibly via interactions with redox-sensitive circadian cycles. Thus, our data illustrate the important regulatory potential of CncC signaling in neuronal function and synaptic release affecting multiple aspects within the nervous system.

20.
Free Radic Biol Med ; 134: 468-483, 2019 04.
Article in English | MEDLINE | ID: mdl-30716433

ABSTRACT

Stress is a multimodal response involving the coordination of numerous body systems in order to maximize the chance of survival. However, long term activation of the stress response results in neuronal oxidative stress via reactive oxygen and nitrogen species generation, contributing to the development of depression. Stress-induced depression shares a high comorbidity with other neurological conditions including Alzheimer's disease (AD) and dementia, often appearing as one of the earliest observable symptoms in these diseases. Furthermore, stress and/or depression appear to exacerbate cognitive impairment in the context of AD associated with dysfunctional catecholaminergic signaling. Given there are a number of homologous pathways involved in the pathophysiology of depression and AD, this article will highlight the mechanisms by which stress-induced perturbations in oxidative stress, and particularly NO signaling, contribute to neurodegeneration.


Subject(s)
Alzheimer Disease/complications , Nervous System Diseases/etiology , Nitric Oxide/metabolism , Oxidative Stress , Animals , Humans , Nervous System Diseases/metabolism , Nervous System Diseases/pathology , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...