Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Stud Mycol ; 101: 417-564, 2022 Jul.
Article in English | MEDLINE | ID: mdl-36059898

ABSTRACT

This paper is the fourth contribution in the Genera of Phytopathogenic Fungi (GOPHY) series. The series provides morphological descriptions and information about the pathology, distribution, hosts and disease symptoms, as well as DNA barcodes for the taxa covered. Moreover, 12 whole-genome sequences for the type or new species in the treated genera are provided. The fourth paper in the GOPHY series covers 19 genera of phytopathogenic fungi and their relatives, including Ascochyta, Cadophora, Celoporthe, Cercospora, Coleophoma, Cytospora, Dendrostoma, Didymella, Endothia, Heterophaeomoniella, Leptosphaerulina, Melampsora, Nigrospora, Pezicula, Phaeomoniella, Pseudocercospora, Pteridopassalora, Zymoseptoria, and one genus of oomycetes, Phytophthora. This study includes two new genera, 30 new species, five new combinations, and 43 typifications of older names. Taxonomic novelties: New genera: Heterophaeomoniella L. Mostert, C.F.J. Spies, Halleen & Gramaje, Pteridopassalora C. Nakash. & Crous; New species: Ascochyta flava Qian Chen & L. Cai, Cadophora domestica L. Mostert, R. van der Merwe, Halleen & Gramaje, Cadophora rotunda L. Mostert, R. van der Merwe, Halleen & Gramaje, Cadophora vinacea J.R. Úrbez-Torres, D.T. O'Gorman & Gramaje, Cadophora vivarii L. Mostert, Havenga, Halleen & Gramaje, Celoporthe foliorum H. Suzuki, Marinc. & M.J. Wingf., Cercospora alyssopsidis M. Bakhshi, Zare & Crous, Dendrostoma elaeocarpi C.M. Tian & Q. Yang, Didymella chlamydospora Qian Chen & L. Cai, Didymella gei Qian Chen & L. Cai, Didymella ligulariae Qian Chen & L. Cai, Didymella qilianensis Qian Chen & L. Cai, Didymella uniseptata Qian Chen & L. Cai, Endothia cerciana W. Wang. & S.F. Chen, Leptosphaerulina miscanthi Qian Chen & L. Cai, Nigrospora covidalis M. Raza, Qian Chen & L. Cai, Nigrospora globospora M. Raza, Qian Chen & L. Cai, Nigrospora philosophiae-doctoris M. Raza, Qian Chen & L. Cai, Phytophthora transitoria I. Milenkovic, T. Májek & T. Jung, Phytophthora panamensis T. Jung, Y. Balci, K. Broders & I. Milenkovic, Phytophthora variabilis T. Jung, M. Horta Jung & I. Milenkovic, Pseudocercospora delonicicola C. Nakash., L. Suhaizan & I. Nurul Faziha, Pseudocercospora farfugii C. Nakash., I. Araki, & Ai Ito, Pseudocercospora hardenbergiae Crous & C. Nakash., Pseudocercospora kenyirana C. Nakash., L. Suhaizan & I. Nurul Faziha, Pseudocercospora perrottetiae Crous, C. Nakash. & C.Y. Chen, Pseudocercospora platyceriicola C. Nakash., Y. Hatt, L. Suhaizan & I. Nurul Faziha, Pseudocercospora stemonicola C. Nakash., Y. Hatt., L. Suhaizan & I. Nurul Faziha, Pseudocercospora terengganuensis C. Nakash., Y. Hatt., L. Suhaizan & I. Nurul Faziha, Pseudocercospora xenopunicae Crous & C. Nakash.; New combinations: Heterophaeomoniella pinifoliorum (Hyang B. Lee et al.) L. Mostert, C.F.J. Spies, Halleen & Gramaje, Pseudocercospora pruni-grayanae (Sawada) C. Nakash. & Motohashi., Pseudocercospora togashiana (K. Ito & Tak. Kobay.) C. Nakash. & Tak. Kobay., Pteridopassalora nephrolepidicola (Crous & R.G. Shivas) C. Nakash. & Crous, Pteridopassalora lygodii (Goh & W.H. Hsieh) C. Nakash. & Crous; Typification: Epitypification: Botrytis infestans Mont., Cercospora abeliae Katsuki, Cercospora ceratoniae Pat. & Trab., Cercospora cladrastidis Jacz., Cercospora cryptomeriicola Sawada, Cercospora dalbergiae S.H. Sun, Cercospora ebulicola W. Yamam., Cercospora formosana W. Yamam., Cercospora fukuii W. Yamam., Cercospora glochidionis Sawada, Cercospora ixorana J.M. Yen & Lim, Cercospora liquidambaricola J.M. Yen, Cercospora pancratii Ellis & Everh., Cercospora pini-densiflorae Hori & Nambu, Cercospora profusa Syd. & P. Syd., Cercospora pyracanthae Katsuki, Cercospora horiana Togashi & Katsuki, Cercospora tabernaemontanae Syd. & P. Syd., Cercospora trinidadensis F. Stevens & Solheim, Melampsora laricis-urbanianae Tak. Matsumoto, Melampsora salicis-cupularis Wang, Phaeoisariopsis pruni-grayanae Sawada, Pseudocercospora angiopteridis Goh & W.H. Hsieh, Pseudocercospora basitruncata Crous, Pseudocercospora boehmeriigena U. Braun, Pseudocercospora coprosmae U. Braun & C.F. Hill, Pseudocercospora cratevicola C. Nakash. & U. Braun, Pseudocercospora cymbidiicola U. Braun & C.F. Hill, Pseudocercospora dodonaeae Boesew., Pseudocercospora euphorbiacearum U. Braun, Pseudocercospora lygodii Goh & W.H. Hsieh, Pseudocercospora metrosideri U. Braun, Pseudocercospora paraexosporioides C. Nakash. & U. Braun, Pseudocercospora symploci Katsuki & Tak. Kobay. ex U. Braun & Crous, Septogloeum punctatum Wakef.; Neotypification: Cercospora aleuritis I. Miyake; Lectotypification: Cercospora dalbergiae S.H. Sun, Cercospora formosana W. Yamam., Cercospora fukuii W. Yamam., Cercospora glochidionis Sawada, Cercospora profusa Syd. & P. Syd., Melampsora laricis-urbanianae Tak. Matsumoto, Phaeoisariopsis pruni-grayanae Sawada, Pseudocercospora symploci Katsuki & Tak. Kobay. ex U. Braun & Crous. Citation: Chen Q, Bakhshi M, Balci Y, Broders KD, Cheewangkoon R, Chen SF, Fan XL, Gramaje D, Halleen F, Horta Jung M, Jiang N, Jung T, Májek T, Marincowitz S, Milenkovic T, Mostert L, Nakashima C, Nurul Faziha I, Pan M, Raza M, Scanu B, Spies CFJ, Suhaizan L, Suzuki H, Tian CM, Tomsovský M, Úrbez-Torres JR, Wang W, Wingfield BD, Wingfield MJ, Yang Q, Yang X, Zare R, Zhao P, Groenewald JZ, Cai L, Crous PW (2022). Genera of phytopathogenic fungi: GOPHY 4. Studies in Mycology 101: 417-564. doi: 10.3114/sim.2022.101.06.

2.
Persoonia ; 45: 196-220, 2020 Dec.
Article in English | MEDLINE | ID: mdl-34456377

ABSTRACT

Trunk disease fungal pathogens reduce olive production globally by causing cankers, dieback, and other decline-related symptoms on olive trees. Very few fungi have been reported in association with olive dieback and decline in South Africa. Many of the fungal species reported from symptomatic olive trees in other countries have broad host ranges and are known to occur on other woody host plants in the Western Cape province, the main olive production region of South Africa. This survey investigated the diversity of fungi and symptoms associated with olive dieback and decline in South Africa. Isolations were made from internal wood symptoms of 145 European and 42 wild olive trees sampled in 10 and 9 districts, respectively. A total of 99 taxa were identified among 440 fungal isolates using combinations of morphological and molecular techniques. A new species of Pseudophaeomoniella, P. globosa, had the highest incidence, being recovered from 42.8 % of European and 54.8 % of wild olive samples. This species was recovered from 9 of the 10 districts where European olive trees were sampled and from all districts where wild olive trees were sampled. Members of the Phaeomoniellales (mainly P. globosa) were the most prevalent fungi in five of the seven symptom types considered, the only exceptions being twig dieback, where members of the Botryosphaeriaceae were more common, and soft/white rot where only Basidiomycota were recovered. Several of the species identified are known as pathogens of olives or other woody crops either in South Africa or elsewhere in the world, including species of Neofusicoccum, Phaeoacremonium, and Pleurostoma richardsiae. However, 81 of the 99 taxa identified have not previously been recorded on olive trees and have unknown interactions with this host. These taxa include one new genus and several putative new species, of which four are formally described as Celerioriella umnquma sp. nov., Pseudophaeomoniella globosa sp. nov., Vredendaliella oleae gen. & sp. nov., and Xenocylindrosporium margaritarum sp. nov.

3.
Stud Mycol ; 92: 47-133, 2019 Mar.
Article in English | MEDLINE | ID: mdl-29997401

ABSTRACT

This paper represents the second contribution in the Genera of Phytopathogenic Fungi (GOPHY) series. The series provides morphological descriptions and information regarding the pathology, distribution, hosts and disease symptoms for the treated genera. In addition, primary and secondary DNA barcodes for the currently accepted species are included. This second paper in the GOPHY series treats 20 genera of phytopathogenic fungi and their relatives including: Allantophomopsiella, Apoharknessia, Cylindrocladiella, Diaporthe, Dichotomophthora, Gaeumannomyces, Harknessia, Huntiella, Macgarvieomyces, Metulocladosporiella, Microdochium, Oculimacula, Paraphoma, Phaeoacremonium, Phyllosticta, Proxypiricularia, Pyricularia, Stenocarpella, Utrechtiana and Wojnowiciella. This study includes the new genus Pyriculariomyces, 20 new species, five new combinations, and six typifications for older names.

4.
Persoonia ; 40: 26-62, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30504995

ABSTRACT

Nineteen Phaeoacremonium species are currently known in South Africa. These have been reported from grapevines, fruit trees, fynbos twig litter and arthropods. In other countries some of these Phaeoacremonium species are also known from hosts such as European olive, quince and willow that commonly occur in the Western Cape Province of South Africa, where most South African records of Phaeoacremonium have been made. The aim of this study was to investigate the species diversity and host-range of Phaeoacremonium in the Western Cape Province of South Africa by characterising 156 isolates collected from 29 woody hosts. Phylogenetic analyses of combined actin and beta-tubulin datasets allowed for the identification of 31 species among the 156 isolates, including 13 new species and 3 known species that had not been recorded in South Africa previously. The new Phaeoacremonium species include P. album, P. aureum, P. bibendum, P. gamsii, P. geminum, P. junior, P. longicollarum, P. meliae, P. oleae, P. paululum, P. proliferatum, P. rosicola and P. spadicum. All previous records of P. alvesii in South Africa were re-identified as P. italicum, but both species were recovered during this survey. A total of 35 described Phaeoacremonium species are now known from South Africa, more than double the number reported from any other country. This high diversity reflects the high diversity of indigenous flora of the Cape Floral Region, a biodiversity hotspot mainly situated in the Western Cape Province. Paraphyly and incongruence between individual phylogenies of the actin and beta-tubulin regions complicated species delimitation in some cases indicating that additional phylogenetic markers should be investigated for use in Phaeoacremonium phylogenies to prevent misidentifications and the introduction of vague species boundaries.

SELECTION OF CITATIONS
SEARCH DETAIL
...