Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 95(2)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38416040

ABSTRACT

Solid-state high harmonic generation (sHHG) spectroscopy is a promising technique for studying electronic structure, symmetry, and dynamics in condensed matter systems. Here, we report on the implementation of an advanced sHHG spectrometer based on a vacuum chamber and closed-cycle helium cryostat. Using an in situ temperature probe, it is demonstrated that the sample interaction region retains cryogenic temperature during the application of high-intensity femtosecond laser pulses that generate high harmonics. The presented implementation opens the door for temperature-dependent sHHG measurements down to a few Kelvin, which makes sHHG spectroscopy a new tool for studying phases of matter that emerge at low temperatures, which is particularly interesting for highly correlated materials.

2.
Struct Dyn ; 10(5): 054304, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37901682

ABSTRACT

We present a dedicated end-station for solution phase high repetition rate (MHz) picosecond hard x-ray spectroscopy at beamline 15-2 of the Stanford Synchrotron Radiation Lightsource. A high-power ultrafast ytterbium-doped fiber laser is used to photoexcite the samples at a repetition rate of 640 kHz, while the data acquisition operates at the 1.28 MHz repetition rate of the storage ring recording data in an alternating on-off mode. The time-resolved x-ray measurements are enabled via gating the x-ray detectors with the 20 mA/70 ps camshaft bunch of SPEAR3, a mode available during the routine operations of the Stanford Synchrotron Radiation Lightsource. As a benchmark study, aiming to demonstrate the advantageous capabilities of this end-station, we have conducted picosecond Fe K-edge x-ray absorption spectroscopy on aqueous [FeII(phen)3]2+, a prototypical spin crossover complex that undergoes light-induced excited spin state trapping forming an electronic excited state with a 0.6-0.7 ns lifetime. In addition, we report transient Fe Kß main line and valence-to-core x-ray emission spectra, showing a unique detection sensitivity and an excellent agreement with model spectra and density functional theory calculations, respectively. Notably, the achieved signal-to-noise ratio, the overall performance, and the routine availability of the developed end-station have enabled a systematic time-resolved science program using the monochromatic beam at the Stanford Synchrotron Radiation Lightsource.

3.
Nat Commun ; 13(1): 5150, 2022 09 07.
Article in English | MEDLINE | ID: mdl-36071037

ABSTRACT

Light-induced microbial electron transfer has potential for efficient production of value-added chemicals, biofuels and biodegradable materials owing to diversified metabolic pathways. However, most microbes lack photoactive proteins and require synthetic photosensitizers that suffer from photocorrosion, photodegradation, cytotoxicity, and generation of photoexcited radicals that are harmful to cells, thus severely limiting the catalytic performance. Therefore, there is a pressing need for biocompatible photoconductive materials for efficient electronic interface between microbes and electrodes. Here we show that living biofilms of Geobacter sulfurreducens use nanowires of cytochrome OmcS as intrinsic photoconductors. Photoconductive atomic force microscopy shows up to 100-fold increase in photocurrent in purified individual nanowires. Photocurrents respond rapidly (<100 ms) to the excitation and persist reversibly for hours. Femtosecond transient absorption spectroscopy and quantum dynamics simulations reveal ultrafast (~200 fs) electron transfer between nanowire hemes upon photoexcitation, enhancing carrier density and mobility. Our work reveals a new class of natural photoconductors for whole-cell catalysis.


Subject(s)
Nanowires , Biofilms , Cytochromes , Electron Transport , Electrons
4.
Photosynth Res ; 151(2): 145-153, 2022 Feb.
Article in English | MEDLINE | ID: mdl-33219918

ABSTRACT

Terahertz (THz) spectroscopy provides a noncontact method to measure the ultrafast dynamics and photoconductivity of mobile carriers in semiconducting materials. This has proven useful in studying artificial photosynthesis devices which use semiconductor photoelectrodes. We present a brief introduction to optical-pump THz-probe (OPTP) spectroscopy, a technique that provides unique and useful insight into interfacial electron transfer (from the surface-attached dye to the conduction band of the semiconductor) in dye-sensitized photoelectrochemical cells. Compared with more familiar methods like visible transient absorption spectroscopy, OPTP spectroscopy stands out in offering both sub-picosecond time resolution as well as sensitivity to mobile carriers (electrons and holes) in the semiconductor portion of artificial photosynthesis devices. The mobile carriers are crucial to device performance as only they pass to the other half cell to complete the reaction. In order to highlight these advantages and illustrate the types of questions OPTP spectroscopy can address, we discuss three case studies. In the first, OPTP spectroscopy is used to measure the injection rates from a set of six different dyes, revealing the effect of the energetics and lifetimes of the dye excited states on interfacial electron transfer. The subsequent case studies investigate the influence of varying the moieties which bind to the surface (anchors), as well as the moieties that connect the chromophore with these anchors (linkers). OPTP spectroscopy was used to measure the interfacial electron transfer rate as these moieties were varied.


Subject(s)
Terahertz Spectroscopy , Electron Transport , Electrons , Photosynthesis , Spectrum Analysis
5.
Anal Chem ; 93(32): 11243-11250, 2021 08 17.
Article in English | MEDLINE | ID: mdl-34355556

ABSTRACT

Terahertz (THz) spectroscopy is a powerful tool for unambiguously extracting complex-valued material properties (e.g., refractive index, conductivity, etc.) from a wide range of samples, with applications ranging from materials science to biology. However, extracting complex refractive indices from THz time-domain spectroscopy data can prove challenging, especially for multilayer samples. These challenges arise from the large number of transmission-reflection paths the THz pulse can take through the sample layers, leading to unwieldy strings of Fresnel coefficients. This issue has often been addressed using various approximations. However, these approximations are only applicable to specific classes of samples and can give erroneous results when misapplied. An alternative to this approach is to programmatically model all possible paths through the sample. The many paths through the sample layers can be modeled as a tree that branches at every point where the paths diverge, i.e., whenever the pulse can either be transmitted or reflected. This tree can then be used to generate expressions relating the unknown refractive index to the observed time domain data. Here, we provide a freely available open-source package implementing this method as both a MATLAB library and a corresponding graphical user interface, which can also be run without a MATLAB license (https://github.com/YaleTHz/nelly). We have tested this method for a range of samples and compared the results to commonly used approximations to demonstrate its accuracy and wide applicability. Our method consistently gives better agreement than common approximations.


Subject(s)
Terahertz Spectroscopy , Refractometry
6.
Anal Chem ; 92(6): 4187-4192, 2020 Mar 17.
Article in English | MEDLINE | ID: mdl-32091896

ABSTRACT

The characterization of emerging materials is crucial for the experimentally driven design of next-generation technologies. We describe a cost- and time-effective method for suspending nanoparticles and other photoactive materials in Nafion for transient spectroscopy and time-resolved terahertz (THz) photoconductivity measurements. Nafion is an ideal suspension matrix because it has high transparency throughout the UV/vis/near-IR and THz regions of the spectrum. Suspensions of nanoparticles in Nafion require only small amounts of sample (<5 mg) and can be prepared and deposited in ∼1 h. The suspension is well-suited for transient THz measurements, which can be used to determine the photoconductivity spectrum of the embedded nanoparticles. In this work, we used silicon nanoparticles as a model material to demonstrate the efficacy of Nafion suspensions for transient THz spectroscopy. This methodology can be used for rapid and cost-effective measurements of emerging materials such as solar materials, electrocatalysts, and nanomaterials.

7.
J Am Chem Soc ; 141(25): 9793-9797, 2019 06 26.
Article in English | MEDLINE | ID: mdl-31179698

ABSTRACT

While metal-organic frameworks (MOFs) have been under thorough investigation over the past two decades, photoconductive MOFs are an emerging class of materials with promising applications in light harvesting and photocatalysis. To date, there is not a general method to investigate the photoconductivity of polycrystalline MOF samples as-prepared. Herein, we utilize time-resolved terahertz spectroscopy along with a new sample preparation method to determine the photoconductivity of Zn2TTFTB, an archetypical conductive MOF, in a noncontact manner. Using this technique, we were able to gain insight into MOF photoconductivity dynamics with subpicosecond resolution, revealing two distinct carrier lifetimes of 0.6 and 31 ps and a long-lived component of several ns. Additionally, we determined the frequency dependent photoconductivity of Zn2TTFTB which was shown to follow Drude-Smith behavior. Such insights are crucially important with regard to developing the next generation of functional photoconductive MOF materials.


Subject(s)
Electric Conductivity , Metal-Organic Frameworks/chemistry , Light , Metal-Organic Frameworks/radiation effects , Refractometry , Terahertz Spectroscopy
8.
J Phys Chem Lett ; 10(10): 2624-2628, 2019 May 16.
Article in English | MEDLINE | ID: mdl-31039310

ABSTRACT

Determining the sequence and structure of peptides is crucial for understanding their structure-property relationships. Among many techniques, structures are typically elucidated using nuclear magnetic resonance spectroscopy and single crystal X-ray diffraction measurements. In this study, we present terahertz time-domain spectroscopy (THz-TDS) as a complementary, nondestructive technique that is sensitive to both the primary and secondary structures of tetrapeptides. Using only a few milligrams of peptide, THz-TDS spectra have been measured, some of which have been supported by density functional theory (DFT) calculations, to distinguish six tetrameric peptides with similar primary and secondary structures.


Subject(s)
Peptides/chemistry , Terahertz Spectroscopy , Density Functional Theory , Protein Conformation
9.
Chem Soc Rev ; 48(7): 1865-1873, 2019 Apr 01.
Article in English | MEDLINE | ID: mdl-30869084

ABSTRACT

As the challenges in science increase in scope and interdisciplinarity, collaboration becomes increasingly important. Our groups have maintained close collaborations for solar fuels research over the past decade. Based on this experience, we discuss strategies for collaboration between experiment and theory including facilitation of effective communication and navigation of problems that arise. These strategies are illustrated by case studies of collaborative efforts in solar fuels research pertaining to interfacial electron transfer in dye-sensitized metal oxides and the design and mechanism of water-oxidation catalysts.

SELECTION OF CITATIONS
SEARCH DETAIL
...