Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Transl Med ; 16(729): eadh1334, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38198573

ABSTRACT

The urea cycle enzyme argininosuccinate lyase (ASL) enables the clearance of neurotoxic ammonia and the biosynthesis of arginine. Patients with ASL deficiency present with argininosuccinic aciduria, an inherited metabolic disease with hyperammonemia and a systemic phenotype coinciding with neurocognitive impairment and chronic liver disease. Here, we describe the dysregulation of glutathione biosynthesis and upstream cysteine utilization in ASL-deficient patients and mice using targeted metabolomics and in vivo positron emission tomography (PET) imaging using (S)-4-(3-18F-fluoropropyl)-l-glutamate ([18F]FSPG). Up-regulation of cysteine metabolism contrasted with glutathione depletion and down-regulated antioxidant pathways. To assess hepatic glutathione dysregulation and liver disease, we present [18F]FSPG PET as a noninvasive diagnostic tool to monitor therapeutic response in argininosuccinic aciduria. Human hASL mRNA encapsulated in lipid nanoparticles improved glutathione metabolism and chronic liver disease. In addition, hASL mRNA therapy corrected and rescued the neonatal and adult Asl-deficient mouse phenotypes, respectively, enhancing ureagenesis. These findings provide mechanistic insights in liver glutathione metabolism and support clinical translation of mRNA therapy for argininosuccinic aciduria.


Subject(s)
Argininosuccinic Aciduria , Liver Diseases , Adult , Humans , Animals , Mice , Argininosuccinic Aciduria/genetics , Argininosuccinic Aciduria/therapy , Cysteine , Glutathione , Metabolomics
2.
Int J Mol Sci ; 24(12)2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37373322

ABSTRACT

Dried blood spots (DBSs) biomarkers are convenient for monitoring for specific lysosomal storage diseases (LSDs), but they could have relevance for other LSDs. To determine the specificity and utility of glycosphingolipidoses biomarkers against other LSDs, we applied a multiplexed lipid liquid chromatography tandem mass spectrometry assay to a DBS cohort of healthy controls (n = 10) and Gaucher (n = 4), Fabry (n = 10), Pompe (n = 2), mucopolysaccharidosis types I-VI (n = 52), and Niemann-Pick disease type C (NPC) (n = 5) patients. We observed no complete disease specificity for any of the markers tested. However, comparison among the different LSDs highlighted new applications and perspectives of the existing biomarkers. We observed elevations in glucosylceramide isoforms in the NPC and Gaucher patients relative to the controls. In NPC, there was a greater proportion of C24 isoforms, giving a specificity of 96-97% for NPC, higher than 92% for the NPC biomarker N-palmitoyl-O-phosphocholineserine ratio to lyso-sphingomyelin. We also observed significantly elevated levels of lyso-dihexosylceramide in Gaucher and Fabry disease as well as elevated lyso-globotriaosylceramide (Lyso-Gb3) in Gaucher disease and the neuronopathic forms of Mucopolysaccharidoses. In conclusion, DBS glucosylceramide isoform profiling has increased the specificity for the detection of NPC, thereby improving diagnostic accuracy. Low levels of lyso-lipids can be observed in other LSDs, which may have implications in their disease pathogenesis.


Subject(s)
Fabry Disease , Lysosomal Storage Diseases , Humans , Glucosylceramides , Lysosomal Storage Diseases/diagnosis , Fabry Disease/diagnosis , Biomarkers , Protein Isoforms
3.
Gene Ther ; 30(6): 487-502, 2023 06.
Article in English | MEDLINE | ID: mdl-36631545

ABSTRACT

Fabry disease is an X-linked lysosomal storage disorder caused by loss of alpha-galactosidase A (α-Gal A) activity and is characterized by progressive accumulation of glycosphingolipids in multiple cells and tissues. FLT190, an investigational gene therapy, is currently being evaluated in a Phase 1/2 clinical trial in patients with Fabry disease (NCT04040049). FLT190 consists of a potent, synthetic capsid (AAVS3) containing an expression cassette with a codon-optimized human GLA cDNA under the control of a liver-specific promoter FRE1 (AAV2/S3-FRE1-GLAco). For mouse studies FLT190 genome was pseudotyped with AAV8 for efficient transduction. Preclinical studies in a murine model of Fabry disease (Gla-deficient mice), and non-human primates (NHPs) showed dose-dependent increases in plasma α-Gal A with steady-state observed 2 weeks following a single intravenous dose. In Fabry mice, AAV8-FLT190 treatment resulted in clearance of globotriaosylceramide (Gb3) and globotriaosylsphingosine (lyso-Gb3) in plasma, urine, kidney, and heart; electron microscopy analyses confirmed reductions in storage inclusion bodies in kidney and heart. In NHPs, α-Gal A expression was consistent with the levels of hGLA mRNA in liver, and no FLT190-related toxicities or adverse events were observed. Taken together, these studies demonstrate preclinical proof-of-concept of liver-directed gene therapy with FLT190 for the treatment of Fabry disease.


Subject(s)
Fabry Disease , Genetic Therapy , Animals , Humans , Mice , Cells, Cultured , Fabry Disease/genetics , Fabry Disease/therapy , Fibroblasts , Genetic Vectors , Liver/metabolism , alpha-Galactosidase/genetics , alpha-Galactosidase/metabolism
4.
Clin Chem Lab Med ; 61(2): 302-310, 2023 01 27.
Article in English | MEDLINE | ID: mdl-36395058

ABSTRACT

OBJECTIVES: During 2020, the UK's Department of Health and Social Care (DHSC) established the Moonshot programme to fund various diagnostic approaches for the detection of SARS-CoV-2, the pathogen behind the COVID-19 pandemic. Mass spectrometry was one of the technologies proposed to increase testing capacity. METHODS: Moonshot funded a multi-phase development programme, bringing together experts from academia, industry and the NHS to develop a state-of-the-art targeted protein assay utilising enrichment and liquid chromatography tandem mass spectrometry (LC-MS/MS) to capture and detect low levels of tryptic peptides derived from SARS-CoV-2 virus. The assay relies on detection of target peptides, ADETQALPQRK (ADE) and AYNVTQAFGR (AYN), derived from the nucleocapsid protein of SARS-CoV-2, measurement of which allowed the specific, sensitive, and robust detection of the virus from nasopharyngeal (NP) swabs. The diagnostic sensitivity and specificity of LC-MS/MS was compared with reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) via a prospective study. RESULTS: Analysis of NP swabs (n=361) with a median RT-qPCR quantification cycle (Cq) of 27 (range 16.7-39.1) demonstrated diagnostic sensitivity of 92.4% (87.4-95.5), specificity of 97.4% (94.0-98.9) and near total concordance with RT-qPCR (Cohen's Kappa 0.90). Excluding Cq>32 samples, sensitivity was 97.9% (94.1-99.3), specificity 97.4% (94.0-98.9) and Cohen's Kappa 0.95. CONCLUSIONS: This unique collaboration between academia, industry and the NHS enabled development, translation, and validation of a SARS-CoV-2 method in NP swabs to be achieved in 5 months. This pilot provides a model and pipeline for future accelerated development and implementation of LC-MS/MS protein/peptide assays into the routine clinical laboratory.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Pandemics , COVID-19/diagnosis , COVID-19 Testing , Tandem Mass Spectrometry/methods , Chromatography, Liquid , Prospective Studies , Clinical Laboratory Techniques/methods , Sensitivity and Specificity , Peptides
5.
EBioMedicine ; 85: 104293, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36182629

ABSTRACT

BACKGROUND: The majority of those infected by ancestral Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) during the UK first wave (starting March 2020) did not require hospitalisation. Most had a short-lived mild or asymptomatic infection, while others had symptoms that persisted for weeks or months. We hypothesized that the plasma proteome at the time of first infection would reflect differences in the inflammatory response that linked to symptom severity and duration. METHODS: We performed a nested longitudinal case-control study and targeted analysis of the plasma proteome of 156 healthcare workers (HCW) with and without lab confirmed SARS-CoV-2 infection. Targeted proteomic multiple-reaction monitoring analysis of 91 pre-selected proteins was undertaken in uninfected healthcare workers at baseline, and in infected healthcare workers serially, from 1 week prior to 6 weeks after their first confirmed SARS-CoV-2 infection. Symptom severity and antibody responses were also tracked. Questionnaires at 6 and 12 months collected data on persistent symptoms. FINDINGS: Within this cohort (median age 39 years, interquartile range 30-47 years), 54 healthcare workers (44% male) had PCR or antibody confirmed infection, with the remaining 102 (38% male) serving as uninfected controls. Following the first confirmed SARS-CoV-2 infection, perturbation of the plasma proteome persisted for up to 6 weeks, tracking symptom severity and antibody responses. Differentially abundant proteins were mostly coordinated around lipid, atherosclerosis and cholesterol metabolism pathways, complement and coagulation cascades, autophagy, and lysosomal function. The proteomic profile at the time of seroconversion associated with persistent symptoms out to 12 months. Data are available via ProteomeXchange with identifier PXD036590. INTERPRETATION: Our findings show that non-severe SARS-CoV-2 infection perturbs the plasma proteome for at least 6 weeks. The plasma proteomic signature at the time of seroconversion has the potential to identify which individuals are more likely to suffer from persistent symptoms related to SARS-CoV-2 infection. FUNDING INFORMATION: The COVIDsortium is supported by funding donated by individuals, charitable Trusts, and corporations including Goldman Sachs, Citadel and Citadel Securities, The Guy Foundation, GW Pharmaceuticals, Kusuma Trust, and Jagclif Charitable Trust, and enabled by Barts Charity with support from University College London Hospitals (UCLH) Charity. This work was additionally supported by the Translational Mass Spectrometry Research Group and the Biomedical Research Center (BRC) at Great Ormond Street Hospital.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Female , Humans , Male , Middle Aged , Case-Control Studies , Proteome , Proteomics
6.
Cell Rep Methods ; 2(9): 100279, 2022 09 19.
Article in English | MEDLINE | ID: mdl-35975199

ABSTRACT

Determining the protection an individual has to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variants of concern (VoCs) is crucial for future immune surveillance, vaccine development, and understanding of the changing immune response. We devised an informative assay to current ELISA-based serology using multiplexed, baited, targeted proteomics for direct detection of multiple proteins in the SARS-CoV-2 anti-spike antibody immunocomplex. Serum from individuals collected after infection or first- and second-dose vaccination demonstrates this approach and shows concordance with existing serology and neutralization. Our assays show altered responses of both immunoglobulins and complement to the Alpha (B.1.1.7), Beta (B.1.351), and Delta (B.1.617.1) VoCs and a reduced response to Omicron (B1.1.1529). We were able to identify individuals who had prior infection, and observed that C1q is closely associated with IgG1 (r > 0.82) and may better reflect neutralization to VoCs. Analyzing additional immunoproteins beyond immunoglobulin (Ig) G, provides important information about our understanding of the response to infection and vaccination.


Subject(s)
Antibody Formation , COVID-19 , Humans , Proteomics , SARS-CoV-2/genetics , Immunoglobulin G , Antibodies, Viral
7.
Dev Med Child Neurol ; 64(12): 1539-1546, 2022 12.
Article in English | MEDLINE | ID: mdl-35833379

ABSTRACT

AIM: Using Niemann-Pick type C disease (NPC) as a paradigm, we aimed to improve biomarker discovery in patients with neurometabolic disorders. METHOD: Using a multiplexed liquid chromatography tandem mass spectrometry dried bloodspot assay, we developed a selective intelligent biomarker panel to monitor known biomarkers N-palmitoyl-O-phosphocholineserine and 3ß,5α,6ß-trihydroxy-cholanoyl-glycine as well as compounds predicted to be affected in NPC pathology. We applied this panel to a clinically relevant paediatric patient cohort (n = 75; 35 males, 40 females; mean age 7 years 6 months, range 4 days-19 years 8 months) presenting with neurodevelopmental and/or neurodegenerative pathology, similar to that observed in NPC. RESULTS: The panel had a far superior performance compared with individual biomarkers. Namely, NPC-related established biomarkers used individually had 91% to 97% specificity but the combined panel had 100% specificity. Moreover, multivariate analysis revealed long-chain isoforms of glucosylceramide were elevated and very specific for patients with NPC. INTERPRETATION: Despite advancements in next-generation sequencing and precision medicine, neurological non-enzymatic disorders remain difficult to diagnose and lack robust biomarkers or routine functional testing for genetic variants of unknown significance. Biomarker panels may have better diagnostic accuracy than individual biomarkers in neurometabolic disorders, hence they can facilitate more prompt disease identification and implementation of emerging targeted, disease-specific therapies. WHAT THIS PAPER ADDS: Intelligent biomarker panel design can help expedite diagnosis in neurometabolic disorders. In Niemann-Pick type C disease, such a panel performed better than individual biomarkers. Biomarker panels are easy to implement and widely applicable to neurometabolic conditions.


Subject(s)
Niemann-Pick Disease, Type C , Male , Female , Child , Humans , Infant, Newborn , Niemann-Pick Disease, Type C/diagnosis , Biomarkers
8.
J Med Genet ; 57(1): 38-47, 2020 01.
Article in English | MEDLINE | ID: mdl-31519711

ABSTRACT

BACKGROUND: Fabry disease is a progressive multisystemic disease, which affects the kidney and cardiovascular systems. Various treatments exist but decisions on how and when to treat are contentious. The current marker for monitoring treatment is plasma globotriaosylsphingosine (lyso-Gb3), but it is not informative about the underlying and developing disease pathology. METHODS: We have created a urine proteomic assay containing a panel of biomarkers designed to measure disease-related pathology which include the inflammatory system, lysosome, heart, kidney, endothelium and cardiovascular system. Using a targeted proteomic-based approach, a series of 40 proteins for organ systems affected in Fabry disease were multiplexed into a single 10 min multiple reaction monitoring Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS) assay and using only 1 mL of urine. RESULTS: Six urinary proteins were elevated in the early-stage/asymptomatic Fabry group compared with controls including albumin, uromodulin, α1-antitrypsin, glycogen phosphorylase brain form, endothelial protein receptor C and intracellular adhesion molecule 1. Albumin demonstrated an increase in urine and could indicate presymptomatic disease. The only protein elevated in the early-stage/asymptomatic patients that continued to increase with progressive multiorgan involvement was glycogen phosphorylase brain form. Podocalyxin, fibroblast growth factor 23, cubulin and Alpha-1-Microglobulin/Bikunin Precursor (AMBP) were elevated only in disease groups involving kidney disease. Nephrin, a podocyte-specific protein, was elevated in all symptomatic groups. Prosaposin was increased in all symptomatic groups and showed greater specificity (p<0.025-0.0002) according to disease severity. CONCLUSION: This work indicates that protein biomarkers could be helpful and used in conjunction with plasma lyso-Gb3 for monitoring of therapy or disease progression in patients with Fabry disease.


Subject(s)
Biomarkers/urine , Fabry Disease/metabolism , Proteomics , Urine/chemistry , Chromatography, Liquid , Fabry Disease/blood , Fabry Disease/urine , Female , Glycolipids/blood , Humans , Male , Sphingolipids/blood , Tandem Mass Spectrometry
9.
Biochim Biophys Acta Mol Basis Dis ; 1865(10): 2726-2735, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31319156

ABSTRACT

Fabry disease (FD) is an X-linked lysosomal storage disorder caused by deficiency of α-galactosidase-A, which results in accumulation of the glycosphingolipid (GSL) globotriaosylceramide (Gb3). Gb3 and globotriaosylsphingosine (lyso-Gb3) levels in plasma and urine are used routinely for diagnosis and treatment monitoring. FD female patients are problematic to diagnose and to predict when to begin treatment. Further biomarkers are needed to detect pre-symptomatic females that will develop the chronic symptoms associated with FD. A LC-MS/MS glycosphingolipidomic assay was developed to measure lyso-Gb3 and GSLs from the lysosomal GSL degradation pathway, including globoside (Gb4), Gb3, ceramide dihexosides (CDH) and ceramide monohexosides (CMH). We analysed plasma and urine from a cohort of Fabry patients, grouped according to clinical symptoms and independent of treatment status (asymptomatic females n = 18, symptomatic females n = 18, males n = 27 and control urines n = 16 and control plasmas n = 58). Multivariate and subsequent univariate analysis showed urine GSLs which had highest significance in identifying asymptomatic females were total levels of CDH, in particular the long chain isoforms C22:1,C22:0,C22:1-OH,C22:0-OH,C24:2,C24:0,C24:2-OH,C24:1-OH,C24:0-OH,C26:0 which likely represent Galabiosylceramide (Ga2) and not lactosylceramide. These long chain Ga2 isoforms were found to be 5-fold elevated and more statistically significant (p < 0.0001) than plasma lyso-Gb3 (p < 0.01) in identifying asymptomatic Fabry female patients. Receiver operating characteristic curve analysis gave an area under the curve of 0.82 (p = 0.001) for lyso-Gb3 and 0.88 (p = 0.0006) for long-chain CDH isoforms indicating the long chain CDH isoforms were as, if not more, a better biomarker for the identification of female FD patients.


Subject(s)
Biomarkers/blood , Biomarkers/urine , Fabry Disease/diagnosis , Glycosphingolipids/blood , Glycosphingolipids/urine , Adult , Aged , Antigens, CD/chemistry , Cerebrosides/blood , Chromatography, Liquid , Fabry Disease/blood , Fabry Disease/urine , Female , Gangliosides/chemistry , Glycosphingolipids/chemistry , Humans , Lactosylceramides/chemistry , Male , Middle Aged , Multivariate Analysis , Protein Isoforms , Switzerland , Tandem Mass Spectrometry , Trihexosylceramides/metabolism , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...