Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Article in English | MEDLINE | ID: mdl-34074746

ABSTRACT

The construction and maturation of the postsynaptic apparatus are crucial for synapse and dendrite development. The fundamental mechanisms underlying these processes are most often studied in glutamatergic central synapses in vertebrates. Whether the same principles apply to excitatory cholinergic synapses, such as those found in the insect central nervous system, is not known. To address this question, we investigated a group of projection neurons in the Drosophila larval visual system, the ventral lateral neurons (LNvs), and identified nAchRα1 (Dα1) and nAchRα6 (Dα6) as the main functional nicotinic acetylcholine receptor (nAchR) subunits in the larval LNvs. Using morphological analyses and calcium imaging studies, we demonstrated critical roles of these two subunits in supporting dendrite morphogenesis and synaptic transmission. Furthermore, our RNA sequencing analyses and endogenous tagging approach identified distinct transcriptional controls over the two subunits in the LNvs, which led to the up-regulation of Dα1 and down-regulation of Dα6 during larval development as well as to an activity-dependent suppression of Dα1 Additional functional analyses of synapse formation and dendrite dynamics further revealed a close association between the temporal regulation of individual nAchR subunits and their sequential requirements during the cholinergic synapse maturation. Together, our findings support transcriptional control of nAchR subunits as a core element of developmental and activity-dependent regulation of central cholinergic synapses.


Subject(s)
Cholinergic Neurons/metabolism , Dendrites/metabolism , Drosophila Proteins/biosynthesis , Morphogenesis , Receptors, Nicotinic/biosynthesis , Synapses/metabolism , Synaptic Transmission , Animals , Drosophila melanogaster , Larva/metabolism
2.
Nat Commun ; 12(1): 2408, 2021 04 23.
Article in English | MEDLINE | ID: mdl-33893307

ABSTRACT

Lipid shuttling between neurons and glia contributes to the development, function, and stress responses of the nervous system. To understand how a neuron acquires its lipid supply from specific lipoproteins and their receptors, we perform combined genetic, transcriptome, and biochemical analyses in the developing Drosophila larval brain. Here we report, the astrocyte-derived secreted lipocalin Glial Lazarillo (GLaz), a homolog of human Apolipoprotein D (APOD), and its neuronal receptor, the brain-specific short isoforms of Drosophila lipophorin receptor 1 (LpR1-short), cooperatively mediate neuron-glia lipid shuttling and support dendrite morphogenesis. The isoform specificity of LpR1 defines its distribution, binding partners, and ability to support proper dendrite growth and synaptic connectivity. By demonstrating physical and functional interactions between GLaz/APOD and LpR1, we elucidate molecular pathways mediating lipid trafficking in the fly brain, and provide in vivo evidence indicating isoform-specific expression of lipoprotein receptors as a key mechanism for regulating cell-type specific lipid recruitment.


Subject(s)
Apolipoproteins/metabolism , Astrocytes/metabolism , Brain/metabolism , Drosophila Proteins/metabolism , Neuroglia/metabolism , Neurons/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Animals , Animals, Genetically Modified , Apolipoproteins/genetics , Biological Transport , Brain/cytology , Drosophila/genetics , Drosophila/metabolism , Drosophila Proteins/genetics , Gene Expression Profiling , Humans , Larva/genetics , Larva/metabolism , Lipocalins/genetics , Lipocalins/metabolism , Protein Binding , Receptors, Cytoplasmic and Nuclear/genetics
3.
Neuroscience ; 435: 124-134, 2020 05 21.
Article in English | MEDLINE | ID: mdl-32251710

ABSTRACT

Fetal alcohol spectrum disorders (FASD) constitute a prevalent, yet preventable, developmental disorder worldwide. While a wealth of research demonstrates that altered function of hippocampus (HPC) and prefrontal cortex may underlie behavioral impairments in FASD, only one published paper to date has examined the impact of developmental alcohol exposure (AE) on the region responsible for coordinated prefrontal-hippocampal activity: thalamic nucleus reuniens (Re). In the current study, we used a rodent model of human third trimester AE to examine both the acute and lasting impact of a single-day AE on Re. We administered 5.25 g/kg of ethanol to male and female Long Evans rat pups on postnatal day (PD) 7. We used unbiased stereological estimation to evaluate cell death or cell loss at three time points: 12 h after alcohol administration; 4 days after alcohol administration (i.e., PD11); in adulthood (i.e.,PD 72). AE on PD7 increased apoptotic cell death in Re on PD7, and caused short-term cell loss on PD11. This relationship between short-term cell death versus cell number suggests that alcohol-related cell loss is driven by induction of apoptosis. In adulthood, alcohol-exposed animals displayed permanent cell loss (mediating volume loss in the Re), which included a reduction in neuron number (relative to procedural controls). Both procedural controls and alcohol exposed animals displayed a deficit in non-neuronal cell number relative to typically-developing controls, suggesting that Re cell populations may be vulnerable to early life stress as well as AE in an insult- and cell type-dependent manner.


Subject(s)
Fetal Alcohol Spectrum Disorders , Midline Thalamic Nuclei , Animals , Animals, Newborn , Apoptosis , Female , Male , Neurons , Pregnancy , Rats , Rats, Long-Evans , Rodentia
4.
Curr Biol ; 29(11): 1866-1876.e5, 2019 06 03.
Article in English | MEDLINE | ID: mdl-31130457

ABSTRACT

Cooperative behavior emerges in biological systems through coordinated actions among individuals [1, 2]. Although widely observed across animal species, the cellular and molecular mechanisms underlying the establishment and maintenance of cooperative behaviors remain largely unknown [3]. To characterize the circuit mechanisms serving the needs of independent individuals and social groups, we investigated cooperative digging behavior in Drosophila larvae [4-6]. Although chemical and mechanical sensations are important for larval aggregation at specific sites [7-9], an individual larva's ability to participate in a cooperative burrowing cluster relies on direct visual input as well as visual and social experience during development. In addition, vision modulates cluster dynamics by promoting coordinated movements between pairs of larvae [5]. To determine the specific pathways within the larval visual circuit underlying cooperative social clustering, we examined larval photoreceptors (PRs) and the downstream local interneurons (lOLPs) using anatomical and functional studies [10, 11]. Our results indicate that rhodopsin-6-expressing-PRs (Rh6-PRs) and lOLPs are required for both cooperative clustering and movement detection. Remarkably, visual deprivation and social isolation strongly impact the structural and functional connectivity between Rh6-PRs and lOLPs, while at the same time having no effect on the adjacent rhodopsin-5-expressing PRs (Rh5-PRs). Together, our findings demonstrate that a specific larval visual pathway involved in social interactions undergoes experience-dependent modifications during development, suggesting that plasticity in sensory circuits could act as the cellular substrate for social learning, a possible mechanism allowing an animal to integrate into a malleable social environment and engage in complex social behaviors.


Subject(s)
Drosophila/physiology , Interneurons/physiology , Photoreceptor Cells, Invertebrate/physiology , Visual Pathways/physiology , Visual Perception/physiology , Animals , Cooperative Behavior , Drosophila/genetics , Drosophila/growth & development , Feeding Behavior/physiology , Larva/genetics , Larva/growth & development , Larva/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...