Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 174
Filter
1.
Nanoscale ; 2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39312211

ABSTRACT

In recent years, the use of MXenes, a class of two-dimensional materials composed of transition metal carbides, nitrides, or carbonitrides, has shown significant promise in the field of skin wound healing. This review explores the multifunctional properties of MXenes, focusing on their electrical conductivity, photothermal effects, and biocompatibility in this field. MXenes have been utilized to develop advanced wound healing devices such as hydrogels, patches, and smart bandages for healing examination. These devices offer enhanced antibacterial activity, promote tissue regeneration, and provide real-time monitoring of parameters. The review highlights the synthesis methods, chemical features, and biological effects of MXenes, emphasizing their role in innovative skin repair strategies. Additionally, it discusses the potential of MXene-based sensors for humidity, pH, and temperature monitoring, which are crucial for preventing infections and complications in wound healing. The integration of MXenes into wearable devices represents a significant advancement in wound management, promising improved clinical outcomes and enhanced quality of life for patients.

2.
Biomater Adv ; 165: 214024, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39232353

ABSTRACT

Graphene oxide (GO), a carbon-based nanomaterial, presents significant potential across biomedical fields such as bioimaging, drug delivery, biosensors, and phototherapy. This study examines the effects of integrating GO into poly(lactic-co-glycolic acid) (PLGA) scaffolds on human immune cell function. Our results demonstrate that high concentrations of GO reduce the viability of peripheral blood mononuclear cells (PBMCs) following stimulation with anti-CD3 antibody. This reduction extends to T lymphocyte activation, evident from the diminished proliferative response to T cell receptor engagement and impaired differentiation into T helper subsets and regulatory T cells. Interestingly, although GO induces a minimal response in resting monocytes, but it significantly affects both the viability and the differentiation potential of monocytes induced to mature toward M1 pro-inflammatory and M2-like immunoregulatory macrophages. This study seeks to address a critical gap by investigating the in vitro immunomodulatory effects of PLGA scaffolds incorporating various concentrations of GO on primary immune cells, specifically PBMCs isolated from healthy donors. Our findings emphasize the need to optimize the GO to PLGA ratios and scaffold design to advance PLGA-GO-based biomedical applications. STATEMENT OF SIGNIFICANCE: Graphene oxide (GO) holds immense promise for biomedical applications due to its unique properties. However, concerns regarding its potential to trigger adverse immune responses remain. This study addresses this critical gap by investigating the in vitro immunomodulatory effects of PLGA scaffolds incorporating increasing GO concentrations on human peripheral blood mononuclear cells (PBMCs). By elucidating the impact on cell viability, T cell proliferation and differentiation, and the maturation/polarization of antigen-presenting cells, this work offers valuable insights for designing safe and immunologically compatible GO-based biomaterials for future clinical translation.


Subject(s)
Graphite , Leukocytes, Mononuclear , Polylactic Acid-Polyglycolic Acid Copolymer , Tissue Scaffolds , Graphite/chemistry , Graphite/pharmacology , Humans , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer/pharmacology , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/immunology , Tissue Scaffolds/chemistry , Cell Differentiation/drug effects , Cell Survival/drug effects , Cell Proliferation/drug effects , Lymphocyte Activation/drug effects , Biocompatible Materials/pharmacology , Biocompatible Materials/chemistry , Monocytes/drug effects , Monocytes/immunology , Macrophages/drug effects , Macrophages/immunology
3.
Nanomaterials (Basel) ; 14(16)2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39195369

ABSTRACT

Recent advancements in nanomedicine and biotechnology have unveiled the remarkable potential of plant-derived extracellular vesicles (PDEVs) as a novel and promising approach for cancer treatment. These naturally occurring nanoscale particles exhibit exceptional biocompatibility, targeted delivery capabilities, and the capacity to load therapeutic agents, positioning them at the forefront of innovative cancer therapy strategies. PDEVs are distinguished by their unique properties that facilitate tumor targeting and penetration, thereby enhancing the efficacy of drug delivery systems. Their intrinsic biological composition allows for the evasion of the immune response, enabling the efficient transport of loaded therapeutic molecules directly to tumor sites. Moreover, PDEVs possess inherent anti-cancer properties, including the ability to induce cell cycle arrest and promote apoptotic pathways within tumor cells. These vesicles have also demonstrated antimetastatic effects, inhibiting the spread and growth of cancer cells. The multifunctional nature of PDEVs allows for the simultaneous delivery of multiple therapeutic agents, further enhancing their therapeutic potential. Engineering and modification techniques, such as encapsulation, and the loading of therapeutic agents via electroporation, sonication, and incubation, have enabled the customization of PDEVs to improve their targeting efficiency and therapeutic load capacity. This includes surface modifications to increase affinity for specific tumor markers and the encapsulation of various types of therapeutic agents, such as small molecule drugs, nucleic acids, and proteins. Their plant-derived origin offers an abundant and renewable source to produce therapeutic vesicles, reducing costs and facilitating scalability for clinical applications. This review provides an in-depth analysis of the latest research on PDEVs as emerging anti-cancer agents in cancer therapy.

4.
Int J Mol Sci ; 25(15)2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39125603

ABSTRACT

Graphene Quantum Dots (GQDs) have shown the potential for antimicrobial photodynamic treatment, due to their particular physicochemical properties. Here, we investigated the activity of three differently functionalized GQDs-Blue Luminescent GQDs (L-GQDs), Aminated GQDs (NH2-GQDs), and Carboxylated GQDs (COOH-GQDs)-against E. coli. GQDs were administrated to bacterial suspensions that were treated with blue light. Antibacterial activity was evaluated by measuring colony forming units (CFUs) and metabolic activities, as well as reactive oxygen species stimulation (ROS). GQD cytotoxicity was then assessed on human colorectal adenocarcinoma cells (Caco-2), before setting in an in vitro infection model. Each GQD exhibits antibacterial activity inducing ROS and impairing bacterial metabolism without significantly affecting cell morphology. GQD activity was dependent on time of exposure to blue light. Finally, GQDs were able to reduce E. coli burden in infected Caco-2 cells, acting not only in the extracellular milieu but perturbating the eukaryotic cell membrane, enhancing antibiotic internalization. Our findings demonstrate that GQDs combined with blue light stimulation, due to photodynamic properties, have a promising antibacterial activity against E. coli. Nevertheless, we explored their action mechanism and toxicity on epithelial cells, fixing and standardizing these infection models.


Subject(s)
Anti-Bacterial Agents , Blue Light , Escherichia coli , Graphite , Quantum Dots , Reactive Oxygen Species , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Caco-2 Cells , Escherichia coli/drug effects , Graphite/chemistry , Graphite/pharmacology , Photochemotherapy/methods , Quantum Dots/chemistry , Reactive Oxygen Species/metabolism
5.
Front Bioeng Biotechnol ; 12: 1390708, 2024.
Article in English | MEDLINE | ID: mdl-38952670

ABSTRACT

Introduction: Triple negative breast cancer (TNBC), a highly aggressive subtype accounting for 15-20% of all breast cancer cases, faces limited treatment options often accompanied by severe side effects. In recent years, natural extracellular nanovesicles derived from plants have emerged as promising candidates for cancer therapy, given their safety profile marked by non-immunogenicity and absence of inflammatory responses. Nevertheless, the potential anti-cancer effects of Citrus limon L.-derived extracellular nanovesicles (CLENs) for breast cancer treatment is still unexplored. Methods: In this study, we investigated the anti-cancer effects of CLENs on two TNBC cell lines (4T1 and HCC-1806 cells) under growth conditions in 2D and 3D culture environments. The cellular uptake efficiency of CLENs and their internalization mechanism were evaluated in both cells using confocal microscopy. Thereafter, we assessed the effect of different concentrations of CLENs on cell viability over time using a dual approach of Calcein-AM PI live-dead assay and CellTiter-Glo bioluminescence assay. We also examined the influence of CLENs on the migratory and evasion abilities of TNBC cells through wound healing and 3D Matrigel drop evasion assays. Furthermore, Western blot analysis was employed to investigate the effects of CLENs on the phosphorylation levels of phosphoinositide 3-kinase (PI3K), protein kinase B (AKT), and extracellular signal- regulated kinase (ERK) expression. Results: We found that CLENs were internalized by the cells via endocytosis, leading to decreased cell viability, in a dose- and time-dependent manner. Additionally, the migration and evasion abilities of TNBC cells were significantly inhibited under exposed to 40 and 80 µg/mL CLENs. Furthermore, down-regulated expression levels of phosphorylated phosphoinositide 3-kinase (PI3K), protein kinase B (AKT), and extracellular signal-regulated kinase (ERK), suggesting that the inhibition of cancer cell proliferation, migration, and evasion is driven by the inhibition of the PI3K/AKT and MAPK/ERK signaling pathways. Discussion: Overall, our results demonstrate the anti-tumor efficiency of CLENs against TNBC cells, highlighting their potential as promising natural anti-cancer agents for clinical applications in cancer treatment.

6.
Bioengineering (Basel) ; 11(7)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-39061746

ABSTRACT

Recent advancements in 3D bioprinting and microfluidic lab-on-chip systems offer promising solutions to the limitations of traditional animal models in biomedical research. Three-dimensional bioprinting enables the creation of complex, patient-specific tissue models that mimic human physiology more accurately than animal models. These 3D bioprinted tissues, when integrated with microfluidic systems, can replicate the dynamic environment of the human body, allowing for the development of multi-organ models. This integration facilitates more precise drug screening and personalized therapy development by simulating interactions between different organ systems. Such innovations not only improve predictive accuracy but also address ethical concerns associated with animal testing, aligning with the three Rs principle. Future directions include enhancing bioprinting resolution, developing advanced bioinks, and incorporating AI for optimized system design. These technologies hold the potential to revolutionize drug development, regenerative medicine, and disease modeling, leading to more effective, personalized, and humane treatments.

7.
Nutrients ; 16(13)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38999768

ABSTRACT

The rising obesity epidemic requires effective and sustainable weight loss intervention strategies that take into account both of individual preferences and environmental impact. This study aims to develop and evaluate the effectiveness of an innovative digital biohacking approach for dietary modifications in promoting sustainable weight loss and reducing carbon footprint impact. A pilot study was conducted involving four participants who monitored their weight, diet, and activities over the course of a year. Data on food consumption, carbon footprint impact, calorie intake, macronutrient composition, weight, and energy expenditure were collected. A digital replica of the metabolism based on nutritional information, the Personalized Metabolic Avatar (PMA), was used to simulate weight changes, plan, and execute the digital biohacking approach to dietary interventions. The dietary modifications suggested by the digital biohacking approach resulted in an average daily calorie reduction of 236.78 kcal (14.24%) and a 15.12% reduction in carbon footprint impact (-736.48 gCO2eq) per participant. Digital biohacking simulations using PMA showed significant differences in weight change compared to actual recorded data, indicating effective weight reduction with the digital biohacking diet. Additionally, linear regression analysis on real data revealed a significant correlation between adherence to the suggested diet and weight loss. In conclusion, the digital biohacking recommendations provide a personalized and sustainable approach to weight loss, simultaneously reducing calorie intake and minimizing the carbon footprint impact. This approach shows promise in combating obesity while considering both individual preferences and environmental sustainability.


Subject(s)
Carbon Footprint , Energy Intake , Obesity , Weight Loss , Humans , Pilot Projects , Male , Female , Obesity/diet therapy , Adult , Energy Metabolism , Middle Aged , Diet, Reducing/methods , Diet/methods
8.
Biotechnol Bioeng ; 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38973124

ABSTRACT

Fast diagnostic methods are crucial to reduce the burden on healthcare systems. Currently, detection of diabetes complications such as neuropathy requires time-consuming approaches to observe the correlated red blood cells (RBCs) morphological changes. To tackle this issue, an optical analysis of RBCs in air was conducted in the 250-2500 nm range. The distinct oscillations present in the scattered and direct transmittance spectra have been analyzed with both Mie theory and anomalous diffraction approximation. The results provide information about the swelling at the ends of RBCs and directly relate the optical data to RBCs morphology and deformability. Both models agree on a reduction in the size and deformability of RBCs in diabetic patients, thus opening the way to diabetes diagnosis and disease progression assessment.

9.
Environ Res ; 260: 119524, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-38972338

ABSTRACT

This review offers a detailed examination of the current landscape of radio frequency (RF) electromagnetic field (EMF) assessment tools, ranging from spectrum analyzers and broadband field meters to area monitors and custom-built devices. The discussion encompasses both standardized and non-standardized measurement protocols, shedding light on the various methods employed in this domain. Furthermore, the review highlights the prevalent use of mobile apps for characterizing 5G NR radio network data. A growing need for low-cost measurement devices is observed, commonly referred to as "sensors" or "sensor nodes", that are capable of enduring diverse environmental conditions. These sensors play a crucial role in both microenvironmental surveys and individual exposures, enabling stationary, mobile, and personal exposure assessments based on body-worn sensors, across wider geographical areas. This review revealed a notable need for cost-effective and long-lasting sensors, whether for individual exposure assessments, mobile (vehicle-integrated) measurements, or incorporation into distributed sensor networks. However, there is a lack of comprehensive information on existing custom-developed RF-EMF measurement tools, especially in terms of measuring uncertainty. Additionally, there is a need for real-time, fast-sampling solutions to understand the highly irregular temporal variations EMF distribution in next-generation networks. Given the diversity of tools and methods, a comprehensive comparison is crucial to determine the necessary statistical tools for aggregating the available measurement data.


Subject(s)
Electromagnetic Fields , Environmental Exposure , Radio Waves , Electromagnetic Fields/adverse effects , Environmental Exposure/analysis , Humans , Radiation Monitoring/methods , Radiation Monitoring/instrumentation
10.
Nutrition ; 125: 112481, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38823253

ABSTRACT

OBJECTIVE: Maintaining plasma glucose homeostasis is vital for mammalian survival, but the masticatory function, which influences glucose regulation, has, to our knowledge, been overlooked. RESEARCH METHODS AND PROCEDURES: In this study, we investigated the relationship between the glycemic response curve and chewing performance in a group of 8 individuals who consumed 80 g of apple. A device called "Chewing" utilizing electromyographic (EMG) technology quantitatively assesses chewing pattern, while glycemic response is analyzed using continuous glucose monitoring. We assessed chewing pattern characterizing chewing time (tchew), number of bites (nchew), work (w), power (wr), and chewing cycles (tcyc). Moreover, we measured the principal features of the glycemic response curve, including the area under the curve (α) and the mean time to reach the glycemic peak (tmean). We used linear regression models to examine the correlations between these variables. RESULTS: tchew, nchew, and wr were correlated with α (R2 =  0.44,   P  <  0.05 for tchew and nchew, P  <  0.001 for wr), and tmean was correlated with tchew (R2  =  0.25,  P  <  0.05). These findings suggest that increasing chewing time and power, while reducing the number of chews, resulted in a wider glycemic curve and an earlier attainment of the glycemic peak. CONCLUSIONS: These results emphasize the influence of proper chewing techniques on blood sugar levels. Implementing correct chewing habits could serve as an additional approach to managing the glycemic curve, particularly for individuals with diabetes.


Subject(s)
Blood Glucose , Homeostasis , Mastication , Humans , Mastication/physiology , Blood Glucose/metabolism , Male , Adult , Linear Models , Female , Young Adult , Electromyography
11.
Nutr Rev ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38722240

ABSTRACT

The objective of this review was to critically examine existing digital applications, tailored for use by citizens and professionals, to provide diet monitoring, diet planning, and precision nutrition. We sought to identify the strengths and weaknesses of such digital applications, while exploring their potential contributions to enhancing public health, and discussed potential developmental pathways. Nutrition is a critical aspect of maintaining good health, with an unhealthy diet being one of the primary risk factors for chronic diseases, such as obesity, diabetes, and cardiovascular disease. Tracking and monitoring one's diet has been shown to help improve health and weight management. However, this task can be complex and time-consuming, often leading to frustration and a lack of adherence to dietary recommendations. Digital applications for diet monitoring, diet generation, and precision nutrition offer the promise of better health outcomes. Data on current nutrition-based digital tools was collected from pertinent literature and software providers. These digital tools have been designed for particular user groups: citizens, nutritionists, and physicians and researchers employing genetics and epigenetics tools. The applications were evaluated in terms of their key functionalities, strengths, and limitations. The analysis primarily concentrated on artificial intelligence algorithms and devices intended to streamline the collection and organization of nutrition data. Furthermore, an exploration was conducted of potential future advancements in this field. Digital applications designed for the use of citizens allow diet self-monitoring, and they can be an effective tool for weight and diabetes management, while digital precision nutrition solutions for professionals can provide scalability, personalized recommendations for patients, and a means of providing ongoing diet support. The limitations in using these digital applications include data accuracy, accessibility, and affordability, and further research and development are required. The integration of artificial intelligence, machine learning, and blockchain technology holds promise for improving the performance, security, and privacy of digital precision nutrition interventions. Multidisciplinarity is crucial for evidence-based and accessible solutions. Digital applications for diet monitoring and precision nutrition have the potential to revolutionize nutrition and health. These tools can make it easier for individuals to control their diets, help nutritionists provide better care, and enable physicians to offer personalized treatment.

12.
Front Microbiol ; 15: 1395815, 2024.
Article in English | MEDLINE | ID: mdl-38774507

ABSTRACT

Introduction: The emergence of drug-resistant Mycobacterium tuberculosis (Mtb) strains has underscored the urgent need for novel therapeutic approaches. Carbon-based nanomaterials, such as graphene oxide (GO), have shown potential in anti-TB activities but suffer from significant toxicity issues. Methods: This study explores the anti-TB potential of differently functionalized graphene quantum dots (GQDs) - non-functionalized, L-GQDs, aminated (NH2-GQDs), and carboxylated (COOH-GQDs) - alone and in combination with standard TB drugs (isoniazid, amikacin, and linezolid). Their effects were assessed in both axenic cultures and in vitro infection models. Results: GQDs alone did not demonstrate direct mycobactericidal effects nor trapping activity. However, the combination of NH2-GQDs with amikacin significantly reduced CFUs in in vitro models. NH2-GQDs and COOH-GQDs also enhanced the antimicrobial activity of amikacin in infected macrophages, although L-GQDs and COOH-GQDs alone showed no significant activity. Discussion: The results suggest that specific types of GQDs, particularly NH2-GQDs, can enhance the efficacy of existing anti-TB drugs. These nanoparticles might serve as effective adjuvants in anti-TB therapy by boosting drug performance and reducing bacterial counts in host cells, highlighting their potential as part of advanced drug delivery systems in tuberculosis treatment. Further investigations are needed to better understand their mechanisms and optimize their use in clinical settings.

13.
Mater Today Bio ; 25: 100986, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38375317

ABSTRACT

Surgically addressing tumors poses a challenge, requiring a tailored, multidisciplinary approach for each patient based on the unique aspects of their case. Innovative therapeutic regimens combined to reliable reconstructive methods can contribute to an extended patient's life expectancy. This study presents a detailed comparative investigation of near-infrared therapy protocols, examining the impact of non-fractionated and fractionated irradiation regimens on cancer treatment. The therapy is based on the implantation of graphene oxide/poly(lactic-co-glycolic acid) three-dimensional printed scaffolds, exploring their versatile applications in oncology by the examination of pro-inflammatory cytokine secretion, immune response, and in vitro and in vivo tumor therapy. The investigation into cell death patterns (apoptosis vs necrosis) underlines the pivotal role of protocol selection underscores the critical influence of treatment duration on cell fate, establishing a crucial parameter in therapeutic decision-making. In vivo experiments corroborated the profound impact of protocol selection on tumor response. The fractionated regimen emerged as the standout performer, achieving a substantial reduction in tumor size over time, surpassing the efficacy of the non-fractionated approach. Additionally, the fractionated regimen exhibited efficacy also in targeting tumors in proximity but not in direct contact to the scaffolds. Our results address a critical gap in current research, highlighting the absence of a standardized protocol for optimizing the outcome of photodynamic therapy. The findings underscore the importance of personalized treatment strategies in achieving optimal therapeutic efficacy for precision cancer therapy.

14.
Eur J Clin Invest ; 54(3): e14121, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37929812

ABSTRACT

AIMS: Improving the composition of circulating fatty acids (FA) leads to a reduction in cardiovascular diseases (CVD) in high-risk individuals. The membrane fluidity of red blood cells (RBC), which reflects circulating FA status, may be a valid biomarker of cardiovascular (CV) risk in type 2 diabetes (T2D). METHODS: Red blood cell membrane fluidity, quantified as general polarization (GP), was assessed in 234 subjects with T2D, 86 with prior major CVD. Based on GP distribution, a cut-off of .445 was used to divide the study cohort into two groups: the first with higher GP, called GEL, and the second, defined as lower GP (LGP). Lipidomic analysis was performed to evaluate FA composition of RBC membranes. RESULTS: Although with comparable CV risk factors, the LGP group had a greater percentage of patients with major CVD than the GEL group (40% vs 24%, respectively, p < .05). Moreover, in a logistic regression analysis, a lower GP value was independently associated with the presence of macrovascular complications. Lipidomic analysis showed a clear shift of LGP membranes towards a pro-inflammatory condition due to higher content of arachidonic acid and increased omega 6/omega 3 index. CONCLUSIONS: Increased membrane fluidity is associated with a higher CV risk in subjects with T2D. If confirmed in prospective studies, membrane fluidity could be a new biomarker for residual CV risk assessment in T2D.


Subject(s)
Cardiovascular Diseases , Diabetes Mellitus, Type 2 , Humans , Erythrocyte Membrane/metabolism , Membrane Fluidity , Prospective Studies , Risk Factors , Erythrocytes/metabolism , Fatty Acids/metabolism , Heart Disease Risk Factors , Biomarkers/metabolism
15.
Int J Mol Sci ; 24(23)2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38069214

ABSTRACT

Seminoma is the most common testicular cancer. Pituitary tumor-transforming gene 1 (PTTG1) is a securin showing oncogenic activity in several tumors. We previously demonstrated that nuclear PTTG1 promotes seminoma tumor invasion through its transcriptional activity on matrix metalloproteinase 2 (MMP-2) and E-cadherin (CDH1). We wondered if specific interactors could affect its subcellular distribution. To this aim, we investigated the PTTG1 interactome in seminoma cell lines showing different PTTG1 nuclear levels correlated with invasive properties. A proteomic approach upon PTTG1 immunoprecipitation uncovered new specific securin interactors. Western blot, confocal microscopy, cytoplasmic/nuclear fractionation, sphere-forming assay, and Atlas database interrogation were performed to validate the proteomic results and to investigate the interplay between PTTG1 and newly uncovered partners. We observed that spectrin beta-chain (SPTBN1) and PTTG1 were cofactors, with SPTBN1 anchoring the securin in the cytoplasm. SPTBN1 downregulation determined PTTG1 nuclear translocation, promoting its invasive capability. Moreover, a PTTG1 deletion mutant lacking SPTBN1 binding was strongly localized in the nucleus. The Atlas database revealed that seminomas that contained higher nuclear PTTG1 levels showed significantly lower SPTBN1 levels in comparison to non-seminomas. In human seminoma specimens, we found a strong PTTG1/SPTBN1 colocalization that decreases in areas with nuclear PTTG1 distribution. Overall, these results suggest that SPTBN1, along with PTTG1, is a potential prognostic factor useful in the clinical management of seminoma.


Subject(s)
Seminoma , Testicular Neoplasms , Humans , Male , Cell Line, Tumor , Cytoplasm/metabolism , Gene Expression Regulation, Neoplastic , Matrix Metalloproteinase 2/metabolism , Proteomics , Securin/genetics , Securin/metabolism , Seminoma/genetics , Spectrin/genetics , Testicular Neoplasms/genetics
16.
Nanoscale ; 15(44): 17972-17986, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37905731

ABSTRACT

The intriguing capability of branched glycoprotein filaments to change their hierarchical organization, mediated by external biophysical stimuli, continues to expand understanding of self-assembling strategies that can dynamically rearrange networks at long range. Previous research has explored the corresponding biological, physiological and genetic mechanisms, focusing on protein assemblies within a limited range of nanometric units. Using direct microscopy bio-imaging, we have determined the morpho-structural changes of self-assembled filament networks of the zona pellucida, revealing controlled levels of structured organizations to join distinct evolved stages of the oocyte (Immature, Mature, and Fertilized). This natural soft network reorganizes its corresponding hierarchical network to generate symmetric, asymmetric, and ultimately a state with the lowest asymmetry of the outer surface roughness, and internal pores reversibly changed from elliptical to circular configurations at the corresponding stages. These elusive morpho-structural changes are regulated by the nanostructured polymorphisms of the branched filaments by self-extension/-contraction/-bending processes, modulated by determinate theoretical angles among repetitive filament units. Controlling the nanoscale self-assembling properties by delivering a minimum number of activation bio-signals may be triggered by these specific nanostructured polymorphic organizations. Finally, this research aims to guide this soft biomaterial into a desired state to protect oocytes, eggs, and embryos during development, to favour/prevent the fertilization/polyspermy processes and eventually to impact interactions with bacteria/virus at multiscale levels.


Subject(s)
Oocytes , Zona Pellucida , Oocytes/metabolism , Zona Pellucida/metabolism , Fertilization , Cytoskeleton , Glycoproteins
17.
J Clin Med ; 12(19)2023 Sep 24.
Article in English | MEDLINE | ID: mdl-37834798

ABSTRACT

Interventional radiotherapy (brachytherapy) has become the new therapeutic standard in the management of early stages nasal vestibule tumors; in fact it allows for high local control rates and low toxicity profiles. However, since more and more patients will receive interventional radiotherapy (brachytherapy) as primary treatment, it is desirable to implement novel strategies to reduce the dose to organs at risk with the future aim to result in further lowering long-term side effects. MATERIALS AND METHODS: We were able to identify two different strategies to reduce dose to the treatment volume, including the implantation technique (the implant can be interstitial, endocavitary or mixed and the catheters may be placed either using the Paris system rules or the anatomical approach) and the dose distribution within the implant (the most commonly used parameter to consider is the dose non-uniformity ratio). We subsequently propose two novel strategies to reduce dose to organs at risk, including the use of metal shields for fixed organs as in the case of the eyes and the use of a mouth swab to push away mobile organs, such in the case of the mandible. We used two different algorithms to verify the values namely the TG-43 and the TG-186. RESULTS: We provided an accurate literature review regarding strategies to reduce toxicity to the treatment volume, underlining the pros and cons of all implantation techniques and about the use dose non-uniformity ratio. Regarding the innovative strategies to reduce the dose to organs at risk, we investigated the use of eye shielding and the use of swabs to push away the mandible by performing an innovative calculation using two different algorithms in a series of three consecutive patients. Our results show that the dose reduction, both in the case of the mandible and in the case of eye shielding, was statistically significant. CONCLUSION: Proper knowledge of the best implantation technique and dose non-uniformity ratio as highlighted by existing literature is mandatory in order to reduce toxicity within the treatment volume. With regard to the dose reduction to the organs at risk we have demonstrated that the use of eye shielding and mouth swab could play a pivotal role in clinical practice; in fact, they are effective at lowering the doses to the surrounding organs and do not require any change to the current clinical workflow.

18.
Nutrients ; 15(18)2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37764715

ABSTRACT

The human gut microbiome, an intricate ecosystem housing trillions of microorganisms within the gastrointestinal tract, holds significant importance in human health and the development of diseases. Recent advances in technology have allowed for an in-depth exploration of the gut microbiome, shedding light on its composition and functions. Of particular interest is the role of diet in shaping the gut microbiome, influencing its diversity, population size, and metabolic functions. Precision nutrition, a personalized approach based on individual characteristics, has shown promise in directly impacting the composition of the gut microbiome. However, to fully understand the long-term effects of specific diets and food components on the gut microbiome and to identify the variations between individuals, longitudinal studies are crucial. Additionally, precise methods for collecting dietary data, alongside the application of machine learning techniques, hold immense potential in comprehending the gut microbiome's response to diet and providing tailored lifestyle recommendations. In this study, we investigated the complex mechanisms that govern the diverse impacts of nutrients and specific foods on the equilibrium and functioning of the individual gut microbiome of seven volunteers (four females and three males) with an average age of 40.9 ± 10.3 years, aiming at identifying potential therapeutic targets, thus making valuable contributions to the field of personalized nutrition. These findings have the potential to revolutionize the development of highly effective strategies that are tailored to individual requirements for the management and treatment of various diseases.

19.
Nat Commun ; 14(1): 4662, 2023 08 03.
Article in English | MEDLINE | ID: mdl-37537177

ABSTRACT

Extreme waves are intense and unexpected wavepackets ubiquitous in complex systems. In optics, these rogue waves are promising as robust and noise-resistant beams for probing and manipulating the underlying material. Localizing large optical power is crucial especially in biomedical systems, where, however, extremely intense beams have not yet been observed. We here discover that tumor-cell spheroids manifest optical rogue waves when illuminated by randomly modulated laser beams. The intensity of light transmitted through bio-printed three-dimensional tumor models follows a signature Weibull statistical distribution, where extreme events correspond to spatially-localized optical modes propagating within the cell network. Experiments varying the input beam power and size indicate that the rogue waves have a nonlinear origin. We show that these nonlinear optical filaments form high-transmission channels with enhanced transmission. They deliver large optical power through the tumor spheroid, and can be exploited to achieve a local temperature increase controlled by the input wave shape. Our findings shed light on optical propagation in biological aggregates and demonstrate how nonlinear extreme event formation allows light concentration in deep tissues, paving the way to using rogue waves in biomedical applications, such as light-activated therapies.


Subject(s)
Models, Theoretical , Optics and Photonics
20.
Biosensors (Basel) ; 13(7)2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37504146

ABSTRACT

Chewing is essential in regulating metabolism and initiating digestion. Various methods have been used to examine chewing, including analyzing chewing sounds and using piezoelectric sensors to detect muscle contractions. However, these methods struggle to distinguish chewing from other movements. Electromyography (EMG) has proven to be an accurate solution, although it requires sensors attached to the skin. Existing EMG devices focus on detecting the act of chewing or classifying foods and do not provide self-awareness of chewing habits. We developed a non-invasive device that evaluates a personalized chewing style by analyzing various aspects, like chewing time, cycle time, work rate, number of chews and work. It was tested in a case study comparing the chewing pattern of smokers and non-smokers, as smoking can alter chewing habits. Previous studies have shown that smokers exhibit reduced chewing speed, but other aspects of chewing were overlooked. The goal of this study is to present the device and provide additional insights into the effects of smoking on chewing patterns by considering multiple chewing features. Statistical analysis revealed significant differences, as non-smokers had more chews and higher work values, indicating more efficient chewing. The device provides valuable insights into personalized chewing profiles and could modify unhealthy chewing habits.


Subject(s)
Mastication , Smoking , Mastication/physiology , Food , Time Factors , Electromyography/methods
SELECTION OF CITATIONS
SEARCH DETAIL