Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Molecules ; 26(5)2021 Feb 26.
Article in English | MEDLINE | ID: mdl-33652901

ABSTRACT

Slow-channel congenital myasthenic syndromes (SCCMSs) are rare genetic diseases caused by mutations in muscle nicotinic acetylcholine receptor (nAChR) subunits. Most of the known SCCMS-associated mutations localize at the transmembrane region near the ion pore. Only two SCCMS point mutations are at the extracellular domains near the acetylcholine binding site, α1(G153S) being one of them. In this work, a combination of molecular dynamics, targeted mutagenesis, fluorescent Ca2+ imaging and patch-clamp electrophysiology has been applied to G153S mutant muscle nAChR to investigate the role of hydrogen bonds formed by Ser 153 with C-loop residues near the acetylcholine-binding site. Introduction of L199T mutation to the C-loop in the vicinity of Ser 153 changed hydrogen bonds distribution, decreased acetylcholine potency (EC50 2607 vs. 146 nM) of the double mutant and decay kinetics of acetylcholine-evoked cytoplasmic Ca2+ rise (τ 14.2 ± 0.3 vs. 34.0 ± 0.4 s). These results shed light on molecular mechanisms of nAChR activation-desensitization and on the involvement of such mechanisms in channelopathy genesis.


Subject(s)
Acetylcholine/genetics , Amino Acid Sequence/genetics , Myasthenic Syndromes, Congenital/genetics , Receptors, Nicotinic/genetics , Acetylcholine/metabolism , Binding Sites/genetics , Calcium/metabolism , Humans , Kinetics , Myasthenic Syndromes, Congenital/pathology , Patch-Clamp Techniques , Point Mutation/genetics , Protein Binding/genetics
2.
Mol Pharmacol ; 96(5): 664-673, 2019 11.
Article in English | MEDLINE | ID: mdl-31492697

ABSTRACT

Many peptide ligands of nicotinic acetylcholine receptors (nAChRs) contain a large number of positively charged amino acid residues, a striking example being conotoxins RgIA and GeXIVA from marine mollusk venom, with an arginine content of >30%. To determine whether peptides built exclusively from arginine residues will interact with different nAChR subtypes or with their structural homologs such as the acetylcholine-binding protein and ligand-binding domain of the nAChR α9 subunit, we synthesized a series of R3, R6, R8, and R16 oligoarginines and investigated their activity by competition with radioiodinated α-bungarotoxin, two-electrode voltage-clamp electrophysiology, and calcium imaging. R6 and longer peptides inhibited muscle-type nAChRs, α7 nAChRs, and α3ß2 nAChRs in the micromolar range. The most efficient inhibition of ion currents was detected for muscle nAChR by R16 (IC50 = 157 nM) and for the α9α10 subtype by R8 and R16 (IC50 = 44 and 120 nM, respectively). Since the R8 affinity for other tested nAChRs was 100-fold lower, R8 appears to be a selective antagonist of α9α10 nAChR. For R8, the electrophysiological and competition experiments indicated the existence of two distinct binding sites on α9α10 nAChR. Since modified oligoarginines and other cationic molecules are widely used as cell-penetrating peptides, we studied several cationic polymers and demonstrated their nAChR inhibitory activity. SIGNIFICANT STATEMENT: By using radioligand analysis, electrophysiology, and calcium imaging, we found that oligoarginine peptides are a new group of inhibitors for muscle nicotinic acetylcholine receptors (nAChRs) and some neuronal nAChRs, the most active being those with 16 and 8 Arg residues. Such compounds and other cationic polymers are cell-penetrating tools for drug delivery, and we also demonstrated the inhibition of nAChRs for several of the latter. Possible positive and negative consequences of such an action should be taken into account.


Subject(s)
Arginine/metabolism , Arginine/pharmacology , Nicotinic Antagonists/metabolism , Nicotinic Antagonists/pharmacology , Peptides/metabolism , Peptides/pharmacology , Animals , Arginine/chemistry , Cell Line, Tumor , Dose-Response Relationship, Drug , Female , Humans , Mice , Nicotinic Antagonists/chemistry , Peptides/chemistry , Receptors, Nicotinic/metabolism , Xenopus laevis
3.
Front Pharmacol ; 10: 748, 2019.
Article in English | MEDLINE | ID: mdl-31333465

ABSTRACT

The proteins of the Ly6 family have a three-finger folding as snake venom α-neurotoxins, targeting nicotinic acetylcholine receptors (nAChRs), and some of them, like mammalian secreted Ly6/uPAR protein (SLURP1) and membrane-attached Ly-6/neurotoxin (Lynx1), also interact with distinct nAChR subtypes. We believed that synthetic fragments of these endogenous proteins might open new ways for drug design because nAChRs are well-known targets for developing analgesics and drugs against neurodegenerative diseases. Since interaction with nAChRs was earlier shown for synthetic fragments of the α-neurotoxin central loop II, we synthesized a 15-membered fragment of human Lynx1, its form with two Cys residues added at the N- and C-termini and forming a disulfide, as well as similar forms of human SLURP1, SLURP2, and of Drosophila sleepless protein (SSS). The IC50 values measured in competition with radioiodinated α-bungarotoxin for binding to the membrane-bound Torpedo californica nAChR were 4.9 and 7.4 µM for Lynx1 and SSS fragments, but over 300 µM for SLURP1 or SLURP2 fragments. The affinity of these compounds for the α7 nAChR in the rat pituitary tumor-derived cell line GH4C1 was different: 13.1 and 147 µM for SSS and Lynx1 fragments, respectively. In competition for the ligand-binding domain of the α9 nAChR subunit, SSS and Lynx1 fragments had IC50 values of about 40 µM, which correlates with the value found for the latter with the rat α9α10 nAChR expressed in the Xenopus oocytes. Thus, the activity of these synthetic peptides against muscle-type and α9α10 nAChRs indicates that they may be useful in design of novel myorelaxants and analgesics.

4.
Cells ; 8(8)2019 07 25.
Article in English | MEDLINE | ID: mdl-31349637

ABSTRACT

Cholinergic dysfunction in Alzheimer's disease (AD) can be mediated by the neuronal α7 nicotinic acetylcholine receptor (α7nAChR). Beta-amyloid peptide (Aß) binds to the α7nAChR, disrupting the receptor's function and causing neurotoxicity. In vivo not only Aß but also its modified forms can drive AD pathogenesis. One of these forms, iso-Aß (containing an isomerized Asp7 residue), shows an increased neurotoxicity in vitro and stimulates amyloidogenesis in vivo. We suggested that such effects of iso-Aß are α7nAChR-dependent. Here, using calcium imaging and electrophysiology, we found that iso-Aß is a more potent inhibitor of the α7nAChR-mediated calcium current than unmodified Aß. However, Asp7 isomerization eliminated the ability of Aß to decrease the α7nAChR levels. These data indicate differences in the interaction of the peptides with the α7nAChR, which we demonstrated using computer modeling. Neither Aß nor iso-Aß competed with 125I-α-bungarotoxin for binding to the orthosteric site of the receptor, suggesting the allosteric binging mode of the peptides. Further we found that increased neurotoxicity of iso-Aß was mediated by the α7nAChR. Thus, the isomerization of Asp7 enhances the inhibitory effect of Aß on the functional activity of the α7nAChR, which may be an important factor in the disruption of the cholinergic system in AD.


Subject(s)
Amyloid beta-Peptides/chemistry , Amyloid beta-Peptides/metabolism , Aspartic Acid/chemistry , alpha7 Nicotinic Acetylcholine Receptor/antagonists & inhibitors , Alzheimer Disease/etiology , Alzheimer Disease/metabolism , Animals , Calcium/metabolism , Cell Line, Tumor , Isomerism , Mice , Models, Molecular , Molecular Imaging , Neurons/metabolism , Oocytes/metabolism , Protein Binding , Structure-Activity Relationship , alpha7 Nicotinic Acetylcholine Receptor/chemistry , alpha7 Nicotinic Acetylcholine Receptor/metabolism
5.
PLoS One ; 14(1): e0210182, 2019.
Article in English | MEDLINE | ID: mdl-30608952

ABSTRACT

Several novel bisbenzylisoquinoline alkaloids (BBIQAs) have recently been isolated from a Matis tribe arrow poison and shown by two-electrode voltage-clamp to inhibit mouse muscle nicotinic acetylcholine receptors (nAChR). Here, using radioligand assay with Aplysia californica AChBP and radioiodinated α-bungarotoxin ([125I]-αBgt), we show that BBIQA1, BBIQA2, and d-tubocurarine (d-TC) have similar affinities to nAChR orthosteric site. However, a competition with [125I]-αBgt for binding to the Torpedo californica muscle-type nAChR revealed that BBIQAs1, 2, and 3 are less potent (IC50s = 26.3, 8.75, and 17.0 µM) than d-TC (IC50 = 0.39 µM), while with α7 nAChR in GH4C1 cells, BBIQA1 was less potent that d-TC (IC50s = 162 µM and 7.77 µM, respectively), but BBIQA2 was similar (IC50 = 5.52 µM). In inhibiting the Ca2+ responses induced by acetylcholine in Neuro2a cells expressing the mouse adult α1ß1εδ nAChR or human α7 nAChR, BBIQAs1 and 2 had similar potencies to d-TC (IC50s in the range 0.75-3.08 µM). Our data suggest that BBIQA1 and BBIQA2 can inhibit adult muscle α1ß1εδ nAChR by both competitive and noncompetitive mechanisms. Further experiments on neuronal α3ß2, α4ß2, and α9α10 nAChRs, expressed in Xenopus laevis oocytes, showed that similar potencies for BBIQAs1, 2, and d-TC. With α3ß2γ2 GABAAR currents were almost completely inhibited by d-TC at a high (100 µM) concentration, but BBIQAs1 and 2 were less potent (only 40-50% inhibition), whereas in competition with Alexa Fluor 546-α-cobratoxin for binding to α1ß3γ2 GABAAR in Neuro2a cells, d-TC and these analogs had comparable affinities. Especially interesting effects of BBIQAs1 and 2 in comparison with d-TC were observed for 5-HT3AR: BBIQA1 and BBIQA2 were 5- and 87-fold less potent than d-TC (IC50 = 22.63 nM). Thus, our results reveal that these BBIQAs differ from d-TC in their potencies towards certain Cys-loop receptors, and we suggest that understanding the reasons behind this might be useful for future drug design.


Subject(s)
Benzylisoquinolines/pharmacology , Curare/chemistry , Poisons/pharmacology , Tubocurarine/pharmacology , Animals , Benzylisoquinolines/chemistry , Cell Line, Tumor , Inhibitory Concentration 50 , Mice , Molecular Docking Simulation , Oocytes , Patch-Clamp Techniques , Poisons/chemistry , Radioligand Assay , Receptors, GABA-A/metabolism , Receptors, Nicotinic/chemistry , Receptors, Nicotinic/metabolism , Receptors, Serotonin, 5-HT3/metabolism , Structure-Activity Relationship , Xenopus laevis
6.
J Med Chem ; 62(4): 1887-1901, 2019 02 28.
Article in English | MEDLINE | ID: mdl-30681854

ABSTRACT

A three-dimensional database search has been applied to design a series of endo- and exo-3-(pyridin-3-yl)bicyclo[2.2.1]heptan-2-amines as nicotinic receptor ligands. The synthesized compounds were tested in radioligand binding assay on rat cortex against [3H]-cytisine and [3H]-methyllycaconitine to measure their affinity for α4ß2* and α7* nicotinic receptors. The new derivatives showed some preference for the α4ß2* over the α7* subtype, with their affinity being dependent on the endo/exo isomerism and on the methylation degree of the basic nitrogen. The endo primary amines displayed the lowest Ki values on both receptor subtypes. Selected compounds (1a, 2a, 3a, and 6a) were tested on heterologously expressed α4ß2, α7, and α3ß2 receptors and on SHSY-5Y cells. Compounds 1a and 2a showed α4ß2 antagonistic properties while behaved as full agonists on recombinant α7 and on SHSY5Y cells. On the α3ß2 subtype, only the chloro derivative 2a showed full agonist activity and submicromolar potency (EC50 = 0.43 µM). The primary amines described here represent new chemotypes for the α7 and α3* receptor subtypes.


Subject(s)
Nicotinic Agonists/pharmacology , Norbornanes/pharmacology , Pyridines/pharmacology , Receptors, Nicotinic/metabolism , alpha7 Nicotinic Acetylcholine Receptor/metabolism , Amines/chemical synthesis , Amines/pharmacology , Animals , Cell Line, Tumor , Cerebral Cortex/metabolism , Drug Design , Humans , Molecular Docking Simulation , Nicotinic Agonists/chemical synthesis , Nicotinic Antagonists/chemical synthesis , Nicotinic Antagonists/pharmacology , Norbornanes/chemical synthesis , Pyridines/chemical synthesis , Rats
7.
Mar Drugs ; 16(12)2018 Nov 22.
Article in English | MEDLINE | ID: mdl-30469507

ABSTRACT

α-Conotoxins from Conus snails are capable of distinguishing muscle and neuronal nicotinic acetylcholine receptors (nAChRs). α-Conotoxin RgIA and αO-conotoxin GeXIVA, blocking neuronal α9α10 nAChR, are potential analgesics. Typically, α-conotoxins bind to the orthosteric sites for agonists/competitive antagonists, but αO-conotoxin GeXIVA was proposed to attach allosterically, judging by electrophysiological experiments on α9α10 nAChR. We decided to verify this conclusion by radioligand analysis in competition with α-bungarotoxin (αBgt) on the ligand-binding domain of the nAChR α9 subunit (α9 LBD), where, from the X-ray analysis, αBgt binds at the orthosteric site. A competition with αBgt was registered for GeXIVA and RgIA, IC50 values being in the micromolar range. However, high nonspecific binding of conotoxins (detected with their radioiodinated derivatives) to His6-resin attaching α9 LBD did not allow us to accurately measure IC50s. However, IC50s were measured for binding to Aplysia californica AChBP: the RgIA globular isomer, known to be active against α9α10 nAChR, was more efficient than the ribbon one, whereas all three GeXIVA isomers had similar potencies at low µM. Thus, radioligand analysis indicated that both conotoxins can attach to the orthosteric sites in these nAChR models, which should be taken into account in the design of analgesics on the basis of these conotoxins.


Subject(s)
Analgesics/pharmacology , Conotoxins/pharmacology , Conus Snail , Nicotinic Antagonists/pharmacology , Receptors, Nicotinic/metabolism , Allosteric Site , Analgesics/chemistry , Animals , Conotoxins/chemistry , Drug Design , Inhibitory Concentration 50 , Nicotinic Antagonists/chemistry , Oocytes , Radioligand Assay/methods , Receptors, Nicotinic/chemistry , Xenopus laevis
8.
Mar Drugs ; 16(4)2018 Mar 28.
Article in English | MEDLINE | ID: mdl-29597332

ABSTRACT

Diverse ligands of the muscle nicotinic acetylcholine receptor (nAChR) are used as muscle relaxants during surgery. Although a plethora of such molecules exists in the market, there is still a need for new drugs with rapid on/off-set, increased selectivity, and so forth. We found that pyrroloiminoquinone alkaloid Makaluvamine G (MG) inhibits several subtypes of nicotinic receptors and ionotropic γ-aminobutiric acid receptors, showing a higher affinity and moderate selectivity toward muscle nAChR. The action of MG on the latter was studied by a combination of electrophysiology, radioligand assay, fluorescent microscopy, and computer modeling. MG reveals a combination of competitive and un-competitive inhibition and caused an increase in the apparent desensitization rate of the murine muscle nAChR. Modeling ion channel kinetics provided evidence for MG binding in both orthosteric and allosteric sites. We also demonstrated that theα1 (G153S) mutant of the receptor, associated with the myasthenic syndrome, is more prone to inhibition by MG. Thus, MG appears to be a perspective hit molecule for the design of allosteric drugs targeting muscle nAChR, especially for treating slow-channel congenital myasthenic syndromes.


Subject(s)
Alkaloids/pharmacology , Muscle, Skeletal/metabolism , Pyrroles/pharmacology , Pyrroloiminoquinones/pharmacology , alpha7 Nicotinic Acetylcholine Receptor/antagonists & inhibitors , Alkaloids/chemistry , Allosteric Site , Animals , Models, Molecular , Molecular Structure , Porifera , Protein Binding , Protein Conformation , Protein Subunits , Pyrroles/chemistry , Pyrroloiminoquinones/chemistry , Torpedo/physiology
9.
Sci Rep ; 7(1): 16606, 2017 11 30.
Article in English | MEDLINE | ID: mdl-29192197

ABSTRACT

Human SLURP-1 is a secreted protein of the Ly6/uPAR/three-finger neurotoxin family that co-localizes with nicotinic acetylcholine receptors (nAChRs) and modulates their functions. Conflicting biological activities of SLURP-1 at various nAChR subtypes have been based on heterologously produced SLURP-1 containing N- and/or C-terminal extensions. Here, we report the chemical synthesis of the 81 amino acid residue human SLURP-1 protein, characterization of its 3D structure by NMR, and its biological activity at nAChR subtypes. Radioligand assays indicated that synthetic SLURP-1 did not compete with [125I]-α-bungarotoxin (α-Bgt) binding to human neuronal α7 and Torpedo californica muscle-type nAChRs, nor to mollusk acetylcholine binding proteins (AChBP). Inhibition of human α7-mediated currents only occurred in the presence of the allosteric modulator PNU120596. In contrast, we observed robust SLURP-1 mediated inhibition of human α3ß4, α4ß4, α3ß2 nAChRs, as well as human and rat α9α10 nAChRs. SLURP-1 inhibition of α9α10 nAChRs was accentuated at higher ACh concentrations, indicating an allosteric binding mechanism. Our results are discussed in the context of recent studies on heterologously produced SLURP-1 and indicate that N-terminal extensions of SLURP-1 may affect its activity and selectivity on its targets. In this respect, synthetic SLURP-1 appears to be a better probe for structure-function studies.


Subject(s)
Antigens, Ly/metabolism , Receptors, Nicotinic/metabolism , Urokinase-Type Plasminogen Activator/metabolism , Allosteric Regulation/drug effects , Amino Acid Sequence , Antigens, Ly/chemistry , Chromatography, High Pressure Liquid , Humans , Isoxazoles/pharmacology , Magnetic Resonance Spectroscopy , Models, Molecular , Muscles/metabolism , Neurons/metabolism , Phenylurea Compounds/pharmacology , Protein Binding , Protein Conformation , Protein Multimerization , Receptors, Nicotinic/chemistry , Spectrometry, Mass, Electrospray Ionization , Structure-Activity Relationship , Urokinase-Type Plasminogen Activator/chemistry
10.
PLoS One ; 12(10): e0186206, 2017.
Article in English | MEDLINE | ID: mdl-29023569

ABSTRACT

Phospholipases A2 (PLA2s) are enzymes found throughout the animal kingdom. They hydrolyze phospholipids in the sn-2 position producing lysophospholipids and unsaturated fatty acids, agents that can damage membranes. PLA2s from snake venoms have numerous toxic effects, not all of which can be explained by phospholipid hydrolysis, and each enzyme has a specific effect. We have earlier demonstrated the capability of several snake venom PLA2s with different enzymatic, cytotoxic, anticoagulant and antiproliferative properties, to decrease acetylcholine-induced currents in Lymnaea stagnalis neurons, and to compete with α-bungarotoxin for binding to nicotinic acetylcholine receptors (nAChRs) and acetylcholine binding protein. Since nAChRs are implicated in postsynaptic and presynaptic activities, in this work we probe those PLA2s known to have strong presynaptic effects, namely ß-bungarotoxin from Bungarus multicinctus and crotoxin from Crotalus durissus terrificus. We also wished to explore whether mammalian PLA2s interact with nAChRs, and have examined non-toxic PLA2 from porcine pancreas. It was found that porcine pancreatic PLA2 and presynaptic ß-bungarotoxin blocked currents mediated by nAChRs in Lymnaea neurons with IC50s of 2.5 and 4.8 µM, respectively. Crotoxin competed with radioactive α-bungarotoxin for binding to Torpedo and human α7 nAChRs and to the acetylcholine binding protein. Pancreatic PLA2 interacted similarly with these targets; moreover, it inhibited radioactive α-bungarotoxin binding to the water-soluble extracellular domain of human α9 nAChR, and blocked acetylcholine induced currents in human α9α10 nAChRs heterologously expressed in Xenopus oocytes. These and our earlier results show that all snake PLA2s, including presynaptically active crotoxin and ß-bungarotoxin, as well as mammalian pancreatic PLA2, interact with nAChRs. The data obtained suggest that this interaction may be a general property of all PLA2s, which should be proved by further experiments.


Subject(s)
Neurons/physiology , Pancreas/enzymology , Phospholipases A2/pharmacology , Snake Venoms/enzymology , Acetylcholine/metabolism , Animals , Bungarotoxins/pharmacology , Crotoxin/pharmacology , Humans , Lymnaea/cytology , Neurons/drug effects , Receptors, Nicotinic/metabolism , Swine/metabolism , Xenopus laevis/genetics
11.
PLoS One ; 12(8): e0181936, 2017.
Article in English | MEDLINE | ID: mdl-28797116

ABSTRACT

Elucidation of the structural basis of pharmacological differences for highly homologous α7 and α9 nicotinic acetylcholine receptors (nAChRs) may shed light on their involvement in different physiological functions and diseases. Combination of site-directed mutagenesis and electrophysiology is a powerful tool to pinpoint the key amino-acid residues in the receptor ligand-binding site, but for α7 and α9 nAChRs it is complicated by their poor expression and fast desensitization. Here, we probed the ligand-binding properties of α7/α9 nAChR mutants by a proposed simple and fast calcium imaging method. The method is based on transient co-expression of α7/α9 nAChR mutants in neuroblastoma cells together with Ric-3 or NACHO chaperones and Case12 fluorescent calcium ion sensor followed by analysis of their pharmacology using a fluorescence microscope or a fluorometric imaging plate reader (FLIPR) with a GFP filter set. The results obtained were confirmed by electrophysiology and by calcium imaging with the conventional calcium indicator Fluo-4. The affinities for acetylcholine and epibatidine were determined for human and rat α7 nAChRs, and for their mutants with homologous residues of α9 nAChR incorporated at positions 117-119, 184, 185, 187, and 189, which are anticipated to be involved in ligand binding. The strongest decrease in the affinity was observed for mutations at positions 187 and 119. The L119D mutation of α7 nAChR, showing a larger effect for epibatidine than for acetylcholine, may implicate this position in pharmacological differences between α7 and α9 nAChRs.


Subject(s)
Calcium/metabolism , Receptors, Nicotinic/genetics , alpha7 Nicotinic Acetylcholine Receptor/genetics , Animals , Cell Line, Tumor , Humans , Mutagenesis, Site-Directed , Rats
12.
Sci Rep ; 6: 36848, 2016 11 14.
Article in English | MEDLINE | ID: mdl-27841338

ABSTRACT

Despite some success for small molecules, elucidating structure-function relationships for biologically active peptides - the ligands for various targets in the organism - remains a great challenge and calls for the development of novel approaches. Some of us recently proposed the Protein Surface Topography (PST) approach, which benefits from a simplified representation of biomolecules' surface as projection maps, which enables the exposure of the structure-function dependencies. Here, we use PST to uncover the "activity pattern" in α-conotoxins - neuroactive peptides that effectively target nicotinic acetylcholine receptors (nAChRs). PST was applied in order to design several variants of the α-conotoxin PnIA, which were synthesized and thoroughly studied. Among the best was PnIA[R9, L10], which exhibits nanomolar affinity for the α7 nAChR, selectivity and a slow wash-out from this target. Importantly, these mutations could hardly be delineated by "standard" structure-based drug design. The proposed combination of PST with a set of experiments proved very efficient for the rational construction of new bioactive molecules.


Subject(s)
Conotoxins/chemical synthesis , Conotoxins/pharmacology , alpha7 Nicotinic Acetylcholine Receptor/metabolism , Allosteric Site , Animals , Circular Dichroism , Computer Simulation , Conotoxins/chemistry , Conotoxins/genetics , Drug Design , Humans , Molecular Dynamics Simulation , Mutation , Structure-Activity Relationship
13.
Toxicon ; 121: 70-76, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27576061

ABSTRACT

Phospholipase A2 (named bitanarin) possessing capability to block nicotinic acetylcholine receptors (nAChRs) was isolated earlier (Vulfius et al., 2011) from puff adder Bitis arietans venom. Further studies indicated that low molecular weight fractions of puff adder venom inhibit nAChRs as well. In this paper, we report on isolation from this venom and characterization of three novel peptides called baptides 1, 2 and 3 that reversibly block nAChRs. To isolate the peptides, the venom of B. arietans was fractionated by gel-filtration and reversed phase chromatography. The amino acid sequences of peptides were established by de novo sequencing using MALDI mass spectrometry. Baptide 1 comprised 7, baptides 2 and 3-10 amino acid residues, the latter being acetylated at the N-terminus. This is the first indication for the presence of such post-translational modification in snake venom proteins. None of the peptides contain cysteine residues. For biological activity studies the peptides were prepared by solid phase peptide synthesis. Baptide 3 and 2 blocked acetylcholine-elicited currents in isolated Lymnaea stagnalis neurons with IC50 of about 50 µM and 250 µM, respectively. In addition baptide 2 blocked acetylcholine-induced currents in muscle nAChR heterologously expressed in Xenopus oocytes with IC50 of about 3 µM. The peptides did not compete with radioactive α-bungarotoxin for binding to Torpedo and α7 nAChRs at concentration up to 200 µM that suggests non-competitive mode of inhibition. Calcium imaging studies on α7 and muscle nAChRs heterologously expressed in mouse neuroblastoma Neuro2a cells showed that on α7 receptor baptide 2 inhibited acetylcholine-induced increasing intracellular calcium concentration with IC50 of 20.6 ± 3.93 µM. On both α7 and muscle nAChRs the suppression of maximal response to acetylcholine by about 50% was observed at baptide 2 concentration of 25 µM, the value being close to IC50 on α7 nAChR. These data are in accord with non-competitive inhibition as follows from α-bungarotoxin binding experiments. The described peptides are the shortest peptides without disulfide bridges isolated from animal venom and capable to inhibit nAChR by non-competitive way.


Subject(s)
Nicotinic Antagonists/pharmacology , Peptides/pharmacology , Receptors, Nicotinic/drug effects , Viper Venoms/chemistry , Animals , Lymnaea/drug effects , Peptides/chemistry , Peptides/isolation & purification , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Viperidae , Xenopus
14.
Eur J Med Chem ; 110: 246-58, 2016 Mar 03.
Article in English | MEDLINE | ID: mdl-26840365

ABSTRACT

As a continuation of previous work on quinoline derivatives, which showed some preference (2-3 times) for the α7 with respect to α4ß2 acetylcholine nicotinic receptors (nAChRs), we synthesized a series of novel azabicyclic or diazabicyclic compounds carrying a quinoline or isoquinoline ring, with the aim of searching for more selective α7 nAChR compounds. Radioligand binding studies on α7* and α4ß2* nAChRs (rat brain homogenate) revealed one compound (7) with a 2-fold higher affinity for the α4ß2*-subtype, and four compounds (11, 13, 14 and 16) with at least 3-fold higher affinity for α7* nAChR. The most promising was 11, showing Ki∼100 nM and over 10-fold selectivity for α7* nAChR. Compounds 7, 11, 13 and 16 at 50 µM suppressed ion currents induced in the rat α4ß2 nAChR and the chimeric nAChR composed of the ligand-binding domain of the chick α7 and transmembrane domain of the α1 glycine receptor, expressed in Xenopus oocytes. Calcium imaging experiments on the human α7 nAChR expressed in the Neuro2a cells and potentiated by PNU-120596 confirmed the antagonistic activity for 7; on the contrary, 11, 13 and 16 were agonists with the EC50 values in the range of 1.0-1.6 µM. Thus, the introduced modifications allowed us to enhance the selectivity of quinolines towards α7 nAChR and to get novel compounds with agonistic activity.


Subject(s)
Quinolines/chemistry , Quinolines/pharmacology , Receptors, Nicotinic/metabolism , alpha7 Nicotinic Acetylcholine Receptor/metabolism , Animals , Bridged Bicyclo Compounds/chemical synthesis , Bridged Bicyclo Compounds/chemistry , Bridged Bicyclo Compounds/pharmacology , Calcium/metabolism , Cell Line, Tumor , Humans , Mice , Molecular Docking Simulation , Nicotine/analogs & derivatives , Nicotine/chemical synthesis , Nicotine/pharmacology , Nicotinic Agonists/chemical synthesis , Nicotinic Agonists/chemistry , Nicotinic Agonists/pharmacology , Nicotinic Antagonists/chemical synthesis , Nicotinic Antagonists/chemistry , Nicotinic Antagonists/pharmacology , Quinolines/chemical synthesis , Rats , Xenopus , alpha7 Nicotinic Acetylcholine Receptor/agonists , alpha7 Nicotinic Acetylcholine Receptor/antagonists & inhibitors
15.
Mar Drugs ; 13(3): 1255-66, 2015 Mar 12.
Article in English | MEDLINE | ID: mdl-25775422

ABSTRACT

6-Bromohypaphorine (6-BHP) has been isolated from the marine sponges Pachymatisma johnstoni, Aplysina sp., and the tunicate Aplidium conicum, but data on its biological activity were not available. For the nudibranch mollusk Hermissenda crassicornis no endogenous compounds were known, and here we describe the isolation of 6-BHP from this mollusk and its effects on different nicotinic acetylcholine receptors (nAChR). Two-electrode voltage-clamp experiments on the chimeric α7 nAChR (built of chicken α7 ligand-binding and glycine receptor transmembrane domains) or on rat α4ß2 nAChR expressed in Xenopus oocytes revealed no action of 6-BHP. However, in radioligand analysis, 6-BHP competed with radioiodinated α-bungarotoxin for binding to human α7 nAChR expressed in GH4C1 cells (IC50 23 ± 1 µM), but showed no competition on muscle-type nAChR from Torpedo californica. In Ca2+-imaging experiments on the human α7 nAChR expressed in the Neuro2a cells, 6-BHP in the presence of PNU120596 behaved as an agonist (EC50 ~80 µM). To the best of our knowledge, 6-BHP is the first low-molecular weight compound from marine source which is an agonist of the nAChR subtype. This may have physiological importance because H. crassicornis, with its simple and tractable nervous system, is a convenient model system for studying the learning and memory processes.


Subject(s)
Hermissenda/metabolism , Nicotinic Agonists/pharmacology , Tryptophan/analogs & derivatives , alpha7 Nicotinic Acetylcholine Receptor/agonists , Animals , Binding, Competitive , Chickens , Humans , Inhibitory Concentration 50 , Molecular Weight , Nicotinic Agonists/administration & dosage , Nicotinic Agonists/isolation & purification , Oocytes , Patch-Clamp Techniques , Rats , Receptors, Nicotinic/drug effects , Receptors, Nicotinic/metabolism , Species Specificity , Torpedo , Tryptophan/administration & dosage , Tryptophan/isolation & purification , Tryptophan/pharmacology , Xenopus laevis
16.
Procedia Comput Sci ; 9: 373-382, 2012 Jan 01.
Article in English | MEDLINE | ID: mdl-22723811

ABSTRACT

In recent years the analysis of noise in gene expression has widely attracted the attention of experimentalists and theoreticians. Experimentally, the approaches based on in vivo fluorescent reporters in single cells appear to be straightforward and effective tools for bacteria and yeast. However, transferring these approaches to multicellular organisms presents many methodological problems. Here we describe our approach to measure between-nucleus variability (noise) in the primary morphogenetic gradient of Bicoid (Bcd) in the precellular blastoderm stage of fruit fly (Drosophila) embryos. The approach is based on the comparison of results for fixed immunostained embryos with observations of live embryos carrying fluorescent Bcd (Bcd-GFP). We measure the noise using two-dimensional Singular Spectrum Analysis (2D SSA). We have found that the nucleus-to-nucleus noise in Bcd intensity, both for live (Bcd-GFP) and for fixed immunstained embryos, tends to be signal-independent. In addition, the character of the noise is sensitive to the nuclear masking technique used to extract quantitative intensities. Further, the method of decomposing the raw quantitative expression data into a signal (expression surface) and residual noise affects the character of the residual noise. We find that careful masking of confocal images and use of appropriate computational tools to decompose raw expression data into trend and noise makes it possible to extract and study the biological noise of gene expression.

SELECTION OF CITATIONS
SEARCH DETAIL
...