Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
2.
Genet Med ; 26(4): 101070, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38376505

ABSTRACT

Clinical cytogenomic studies of solid tumor samples are critical to the diagnosis, prognostication, and treatment selection for cancer patients. An overview of current cytogenomic techniques for solid tumor analysis is provided, including standards for sample preparation, clinical and technical considerations, and documentation of results. With the evolving technologies and their application in solid tumor analysis, these standards now include sequencing technology and optical genome mapping, in addition to the conventional cytogenomic methods, such as G-banded chromosome analysis, fluorescence in situ hybridization, and chromosomal microarray analysis. This updated Section E6.7-6.12 supersedes the previous Section E6.5-6.8 in Section E: Clinical Cytogenetics of the American College of Medical Genetics and Genomics Standards for Clinical Genetics Laboratories.


Subject(s)
Genetics, Medical , Neoplasms , Humans , United States , Laboratories , In Situ Hybridization, Fluorescence/methods , Chromosome Aberrations , Neoplasms/diagnosis , Neoplasms/genetics , Chromosomes , Genomics
3.
NPJ Genom Med ; 9(1): 15, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38409289

ABSTRACT

Early use of genome sequencing (GS) in the diagnostic odyssey can reduce suffering and improve care, but questions remain about which patient populations are most amenable to GS as a first-line diagnostic test. To address this, the Medical Genome Initiative conducted a literature review to identify appropriate clinical indications for GS. Studies published from January 2011 to August 2022 that reported on the diagnostic yield (DY) or clinical utility of GS were included. An exploratory meta-analysis using a random effects model evaluated DY based on cohort size and diagnosed cases per cohort. Seventy-one studies met inclusion criteria, comprising over 13,000 patients who received GS in one of the following settings: hospitalized pediatric patients, pediatric outpatients, adult outpatients, or mixed. GS was the first-line test in 38% (27/71). The unweighted mean DY of first-line GS was 45% (12-73%), 33% (6-86%) in cohorts with prior genetic testing, and 33% (9-60%) in exome-negative cohorts. Clinical utility was reported in 81% of first-line GS studies in hospitalized pediatric patients. Changes in management varied by cohort and underlying molecular diagnosis (24-100%). To develop evidence-informed points to consider, the quality of all 71 studies was assessed using modified American College of Radiology (ACR) criteria, with five core points to consider developed, including recommendations for use of GS in the N/PICU, in lieu of sequential testing and when disorders with substantial allelic heterogeneity are suspected. Future large and controlled studies in the pediatric and adult populations may support further refinement of these recommendations.

4.
Leuk Res ; 136: 107433, 2024 01.
Article in English | MEDLINE | ID: mdl-38154193

ABSTRACT

Myelodysplastic neoplasms (MDS) are clonal disorders of bone marrow failure exhibiting a variable risk of progression to acute myeloid leukemia. MDS exhibit certain prognostic genetic or cytogenetic abnormalities, an observation that has led to both the pathologic reclassification of MDS in the 2022 World Health Organization (WHO) and International Consensus Classification (ICC) systems, as well as to an updated prognostic schema, the Molecular International Prognostic Scoring System (IPSS-M). This single-institution study characterized the molecular patterns and clinical outcomes associated with the 2022 WHO and ICC classification schemas to assess their clinical utility. Strikingly, with the exception of one individual, all 210 patients in our cohort were classified into analogous categories by the two pathologic/diagnostic schemas. Most patients (70%) were classified morphologically while the remaining 30% had genetically classified disease by both criteria. Prognostic risk, as assessed by the IPSS-M score was highest in patients with MDS with biallelic/multi-hit TP53 mutations and lowest in pts with MDS-SF3B1. Median leukemia-free survival (LFS) was shortest for those with MDS with biallelic/multi-hit TP53 (0.7 years) and longest for those with MDS with low blasts (LFS not reached). These data demonstrate the clear ability of the 2022 WHO and ICC classifications to organize MDS patients into distinct prognostic risk groups and further show that both classification systems share more similarities than differences. Incorporation of the IPSS-M and IPSS-R features provide additive prognostic and survival components to both the WHO and ICC classifications, which together enhance their utility for evaluating and treating MDS patients.


Subject(s)
Leukemia, Myeloid, Acute , Myelodysplastic Syndromes , Humans , Prognosis , Consensus , Myelodysplastic Syndromes/pathology , Leukemia, Myeloid, Acute/genetics , World Health Organization
5.
J Physiol ; 601(23): 5367-5389, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37883018

ABSTRACT

Two KCNA2 variants (p.H310Y and p.H310R) were discovered in paediatric patients with epilepsy and developmental delay. KCNA2 encodes KV 1.2-channel subunits, which regulate neuronal excitability. Both gain and loss of KV 1.2 function cause epilepsy, precluding the prediction of variant effects; and while H310 is conserved throughout the KV -channel superfamily, it is largely understudied. We investigated both variants in heterologously expressed, human KV 1.2 channels by immunocytochemistry, electrophysiology and voltage-clamp fluorometry. Despite affecting the same channel, at the same position, and being associated with severe neurological disease, the two variants had diametrically opposite effects on KV 1.2 functional expression. The p.H310Y variant produced 'dual gain of function', increasing both cell-surface trafficking and activity, delaying channel closure. We found that the latter is due to the formation of a hydrogen bond that stabilizes the active state of the voltage-sensor domain. Additionally, H310Y abolished 'ball and chain' inactivation of KV 1.2 by KV ß1 subunits, enhancing gain of function. In contrast, p.H310R caused 'dual loss of function', diminishing surface levels by multiple impediments to trafficking and inhibiting voltage-dependent channel opening. We discuss the implications for KV -channel biogenesis and function, an emergent hotspot for disease-associated variants, and mechanisms of epileptogenesis. KEY POINTS: KCNA2 encodes the subunits of KV 1.2 voltage-activated, K+ -selective ion channels, which regulate electrical signalling in neurons. We characterize two KCNA2 variants from patients with developmental delay and epilepsy. Both variants affect position H310, highly conserved in KV channels. The p.H310Y variant caused 'dual gain of function', increasing both KV 1.2-channel activity and the number of KV 1.2 subunits on the cell surface. H310Y abolished 'ball and chain' (N-type) inactivation of KV 1.2 by KV ß1 subunits, enhancing the gain-of-function phenotype. The p.H310R variant caused 'dual loss of function', diminishing the presence of KV 1.2 subunits on the cell surface and inhibiting voltage-dependent channel opening. As H310Y stabilizes the voltage-sensor active conformation and abolishes N-type inactivation, it can serve as an investigative tool for functional and pharmacological studies.


Subject(s)
Epilepsy , Humans , Child , Epilepsy/genetics , Neurons/physiology , Signal Transduction , Cell Membrane , Phenotype , Kv1.2 Potassium Channel/genetics
6.
Nat Commun ; 13(1): 5107, 2022 08 30.
Article in English | MEDLINE | ID: mdl-36042219

ABSTRACT

The SARS-CoV-2 pandemic has differentially impacted populations across race and ethnicity. A multi-omic approach represents a powerful tool to examine risk across multi-ancestry genomes. We leverage a pandemic tracking strategy in which we sequence viral and host genomes and transcriptomes from nasopharyngeal swabs of 1049 individuals (736 SARS-CoV-2 positive and 313 SARS-CoV-2 negative) and integrate them with digital phenotypes from electronic health records from a diverse catchment area in Northern California. Genome-wide association disaggregated by admixture mapping reveals novel COVID-19-severity-associated regions containing previously reported markers of neurologic, pulmonary and viral disease susceptibility. Phylodynamic tracking of consensus viral genomes reveals no association with disease severity or inferred ancestry. Summary data from multiomic investigation reveals metagenomic and HLA associations with severe COVID-19. The wealth of data available from residual nasopharyngeal swabs in combination with clinical data abstracted automatically at scale highlights a powerful strategy for pandemic tracking, and reveals distinct epidemiologic, genetic, and biological associations for those at the highest risk.


Subject(s)
COVID-19 , Pandemics , COVID-19/epidemiology , Genome, Viral , Genome-Wide Association Study , Humans , SARS-CoV-2/genetics
7.
Genet Med ; 24(8): 1774-1780, 2022 08.
Article in English | MEDLINE | ID: mdl-35567594

ABSTRACT

PURPOSE: SRRM2 encodes the SRm300 protein, a splicing factor of the SR-related protein family characterized by its serine- and arginine-enriched domains. It promotes interactions between messenger RNA and the spliceosome catalytic machinery. This gene, predicted to be highly intolerant to loss of function (LoF) and very conserved through evolution, has not been previously reported in constitutive human disease. METHODS: Among the 1000 probands studied with developmental delay and intellectual disability in our database, we found 2 patients with de novo LoF variants in SRRM2. Additional families were identified through GeneMatcher. RESULTS: Here, we report on 22 patients with LoF variants in SRRM2 and provide a description of the phenotype. Molecular analysis identified 12 frameshift variants, 8 nonsense variants, and 2 microdeletions of 66 kb and 270 kb. The patients presented with a mild developmental delay, predominant speech delay, autistic or attention-deficit/hyperactivity disorder features, overfriendliness, generalized hypotonia, overweight, and dysmorphic facial features. Intellectual disability was variable and mild when present. CONCLUSION: We established SRRM2 as a gene responsible for a rare neurodevelopmental disease.


Subject(s)
Intellectual Disability , Neurodevelopmental Disorders , RNA-Binding Proteins/genetics , Child , Developmental Disabilities/genetics , Humans , Intellectual Disability/genetics , Muscle Hypotonia/genetics , Neurodevelopmental Disorders/genetics , Phenotype
8.
NPJ Genom Med ; 7(1): 27, 2022 Apr 08.
Article in English | MEDLINE | ID: mdl-35395838

ABSTRACT

Whole genome sequencing (WGS) shows promise as a first-tier diagnostic test for patients with rare genetic disorders. However, standards addressing the definition and deployment practice of a best-in-class test are lacking. To address these gaps, the Medical Genome Initiative, a consortium of leading health care and research organizations in the US and Canada, was formed to expand access to high quality clinical WGS by convening experts and publishing best practices. Here, we present best practice recommendations for the interpretation and reporting of clinical diagnostic WGS, including discussion of challenges and emerging approaches that will be critical to harness the full potential of this comprehensive test.

9.
Nat Biotechnol ; 40(7): 1035-1041, 2022 07.
Article in English | MEDLINE | ID: mdl-35347328

ABSTRACT

Whole-genome sequencing (WGS) can identify variants that cause genetic disease, but the time required for sequencing and analysis has been a barrier to its use in acutely ill patients. In the present study, we develop an approach for ultra-rapid nanopore WGS that combines an optimized sample preparation protocol, distributing sequencing over 48 flow cells, near real-time base calling and alignment, accelerated variant calling and fast variant filtration for efficient manual review. Application to two example clinical cases identified a candidate variant in <8 h from sample preparation to variant identification. We show that this framework provides accurate variant calls and efficient prioritization, and accelerates diagnostic clinical genome sequencing twofold compared with previous approaches.


Subject(s)
Nanopore Sequencing , Nanopores , Chromosome Mapping , High-Throughput Nucleotide Sequencing/methods , Humans , Whole Genome Sequencing/methods
12.
Cancers (Basel) ; 13(24)2021 Dec 14.
Article in English | MEDLINE | ID: mdl-34944883

ABSTRACT

Children with chronic myeloid leukemia (CML) tend to present with higher white blood counts and larger spleens than adults with CML, suggesting that the biology of pediatric and adult CML may differ. To investigate whether pediatric and adult CML have unique molecular characteristics, we studied the transcriptomic signature of pediatric and adult CML CD34+ cells and healthy pediatric and adult CD34+ control cells. Using high-throughput RNA sequencing, we found 567 genes (207 up- and 360 downregulated) differentially expressed in pediatric CML CD34+ cells compared to pediatric healthy CD34+ cells. Directly comparing pediatric and adult CML CD34+ cells, 398 genes (258 up- and 140 downregulated), including many in the Rho pathway, were differentially expressed in pediatric CML CD34+ cells. Using RT-qPCR to verify differentially expressed genes, VAV2 and ARHGAP27 were significantly upregulated in adult CML CD34+ cells compared to pediatric CML CD34+ cells. NCF1, CYBB, and S100A8 were upregulated in adult CML CD34+ cells but not in pediatric CML CD34+ cells, compared to healthy controls. In contrast, DLC1 was significantly upregulated in pediatric CML CD34+ cells but not in adult CML CD34+ cells, compared to healthy controls. These results demonstrate unique molecular characteristics of pediatric CML, such as dysregulation of the Rho pathway, which may contribute to clinical differences between pediatric and adult patients.

13.
Genet Med ; 23(4): 661-668, 2021 04.
Article in English | MEDLINE | ID: mdl-33420346

ABSTRACT

PURPOSE: To identify novel genes associated with intellectual disability (ID) in four unrelated families. METHODS: Here, through exome sequencing and international collaboration, we report eight individuals from four unrelated families of diverse geographic origin with biallelic loss-of-function variants in UBE4A. RESULTS: Eight evaluated individuals presented with syndromic intellectual disability and global developmental delay. Other clinical features included hypotonia, short stature, seizures, and behavior disorder. Characteristic features were appreciated in some individuals but not all; in some cases, features became more apparent with age. We demonstrated that UBE4A loss-of-function variants reduced RNA expression and protein levels in clinical samples. Mice generated to mimic patient-specific Ube4a loss-of-function variant exhibited muscular and neurological/behavioral abnormalities, some of which are suggestive of the clinical abnormalities seen in the affected individuals. CONCLUSION: These data indicate that biallelic loss-of-function variants in UBE4A cause a novel intellectual disability syndrome, suggesting that UBE4A enzyme activity is required for normal development and neurological function.


Subject(s)
Dwarfism , Intellectual Disability , Ubiquitin-Protein Ligases/genetics , Animals , Child , Developmental Disabilities/genetics , Humans , Intellectual Disability/genetics , Mice , Muscle Hypotonia , Phenotype , Syndrome , Exome Sequencing
14.
Platelets ; 32(8): 1108-1112, 2021 Nov 17.
Article in English | MEDLINE | ID: mdl-33400601

ABSTRACT

Congenital macrothrombocytopenia is a genetically heterogeneous group of rare disorders. We herein report a large Chinese family presented with phenotypic variability involving thrombocytopenia and/or giant platelets. Whole genome sequencing (WGS) of the proband and one of his affected brothers identified a potentially pathogenic c.952 C > T heterozygous variant in the TUBB1 gene. This p.R318W ß1-tubulin variant was also identified in three additional siblings and five members of the next generation. These findings were consistent with an autosomal dominant inheritance with incomplete penetrance. Moreover, impaired platelet agglutination in response to ristocetin was detected in the patient's brother. Half of the family members harboring the p.R318W mutation displayed significantly decreased external release of p-selectin by stimulated platelets. The p.R318W ß1-tubulin mutation was identified for the first time in a Chinese family with congenital macrothrombocytopenia using WGS as an unbiased sequencing approach. Affected individuals within the family demonstrated impaired platelet aggregation and/or release functions.


Subject(s)
Thrombocytopenia/congenital , Thrombocytopenia/genetics , Tubulin/metabolism , Adolescent , Asian People , Humans , Male , Whole Genome Sequencing
15.
Nat Genet ; 47(6): 579-81, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25938945

ABSTRACT

Primary familial brain calcification (PFBC) is a neurological disease characterized by calcium phosphate deposits in the basal ganglia and other brain regions and has thus far been associated with SLC20A2, PDGFB or PDGFRB mutations. We identified in multiple families with PFBC mutations in XPR1, a gene encoding a retroviral receptor with phosphate export function. These mutations alter phosphate export, implicating XPR1 and phosphate homeostasis in PFBC.


Subject(s)
Brain Diseases, Metabolic, Inborn/genetics , Calcinosis/genetics , Receptors, G-Protein-Coupled/genetics , Receptors, Virus/genetics , DNA Mutational Analysis , Female , Genetic Association Studies , Genetic Predisposition to Disease , HEK293 Cells , Humans , Lod Score , Male , Middle Aged , Mutation, Missense , Neurodegenerative Diseases/genetics , Pedigree , Xenotropic and Polytropic Retrovirus Receptor
16.
Oncotarget ; 6(2): 696-714, 2015 Jan 20.
Article in English | MEDLINE | ID: mdl-25557169

ABSTRACT

High-grade serous ovarian cancers (HGSOC) are genomically complex, heterogeneous cancers with a high mortality rate, due to acquired chemoresistance and lack of targeted therapy options. Cyclin-dependent kinase inhibitors (CDKi) target the retinoblastoma (RB) signaling network, and have been successfully incorporated into treatment regimens for breast and other cancers. Here, we have compared mechanisms of response and resistance to three CDKi that target either CDK4/6 or CDK2 and abrogate E2F target gene expression. We identify CCNE1 gain and RB1 loss as mechanisms of resistance to CDK4/6 inhibition, whereas receptor tyrosine kinase (RTK) and RAS signaling is associated with CDK2 inhibitor resistance. Mechanistically, we show that ETS factors are mediators of RTK/RAS signaling that cooperate with E2F in cell cycle progression. Consequently, CDK2 inhibition sensitizes cyclin E1-driven but not RAS-driven ovarian cancer cells to platinum-based chemotherapy. In summary, this study outlines a rational approach for incorporating CDKi into treatment regimens for HGSOC.


Subject(s)
Cyclin E/metabolism , Oncogene Proteins/metabolism , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/metabolism , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-ets/metabolism , Proto-Oncogene Proteins/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , ras Proteins/metabolism , Animals , Cyclin-Dependent Kinases/antagonists & inhibitors , Drug Resistance, Neoplasm , E2F Transcription Factors/genetics , E2F Transcription Factors/metabolism , Female , Humans , Mice , Mice, Nude , Ovarian Neoplasms/enzymology , Ovarian Neoplasms/genetics , Oxazoles/pharmacology , Piperazines/pharmacology , Proto-Oncogene Proteins c-ets/genetics , Proto-Oncogene Proteins p21(ras) , Pyridines/pharmacology , Random Allocation , Signal Transduction/drug effects , Thiazoles/pharmacology , Transcription, Genetic , Xenograft Model Antitumor Assays
17.
Nat Genet ; 45(9): 1077-82, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23913003

ABSTRACT

Calcifications in the basal ganglia are a common incidental finding and are sometimes inherited as an autosomal dominant trait (idiopathic basal ganglia calcification (IBGC)). Recently, mutations in the PDGFRB gene coding for the platelet-derived growth factor receptor ß (PDGF-Rß) were linked to IBGC. Here we identify six families of different ancestry with nonsense and missense mutations in the gene encoding PDGF-B, the main ligand for PDGF-Rß. We also show that mice carrying hypomorphic Pdgfb alleles develop brain calcifications that show age-related expansion. The occurrence of these calcium depositions depends on the loss of endothelial PDGF-B and correlates with the degree of pericyte and blood-brain barrier deficiency. Thus, our data present a clear link between Pdgfb mutations and brain calcifications in mice, as well as between PDGFB mutations and IBGC in humans.


Subject(s)
Basal Ganglia Diseases/genetics , Basal Ganglia Diseases/pathology , Calcinosis/genetics , Mutation , Proto-Oncogene Proteins c-sis/genetics , Amino Acid Substitution , Animals , Basal Ganglia Diseases/diagnosis , Brain/metabolism , Brain/pathology , Disease Models, Animal , Female , Gene Order , Humans , Magnetic Resonance Imaging , Male , Mice , Mice, Knockout , Pedigree , Tomography, X-Ray Computed
18.
Neurogenetics ; 14(1): 11-22, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23334463

ABSTRACT

Familial idiopathic basal ganglia calcification (IBGC) or Fahr's disease is a rare neurodegenerative disorder characterized by calcium deposits in the basal ganglia and other brain regions, which is associated with neuropsychiatric and motor symptoms. Familial IBGC is genetically heterogeneous and typically transmitted in an autosomal dominant fashion. We performed a mutational analysis of SLC20A2, the first gene found to cause IBGC, to assess its genetic contribution to familial IBGC. We recruited 218 subjects from 29 IBGC-affected families of varied ancestry and collected medical history, neurological exam, and head CT scans to characterize each patient's disease status. We screened our patient cohort for mutations in SLC20A2. Twelve novel (nonsense, deletions, missense, and splice site) potentially pathogenic variants, one synonymous variant, and one previously reported mutation were identified in 13 families. Variants predicted to be deleterious cosegregated with disease in five families. Three families showed nonsegregation with clinical disease of such variants, but retrospective review of clinical and neuroimaging data strongly suggested previous misclassification. Overall, mutations in SLC20A2 account for as many as 41% of our familial IBGC cases. Our screen in a large series expands the catalog of SLC20A2 mutations identified to date and demonstrates that mutations in SLC20A2 are a major cause of familial IBGC. Non-perfect segregation patterns of predicted deleterious variants highlight the challenges of phenotypic assessment in this condition with highly variable clinical presentation.


Subject(s)
Basal Ganglia Diseases/genetics , Calcinosis/genetics , Mutation , Neurodegenerative Diseases/genetics , Sodium-Phosphate Cotransporter Proteins, Type III/genetics , Adult , Aged , Amino Acid Sequence , Cohort Studies , DNA Mutational Analysis , Family , Female , Humans , Linkage Disequilibrium , Male , Middle Aged , Models, Biological , Molecular Sequence Data , Mutation/physiology , Retrospective Studies
19.
Cancer Genet ; 204(7): 392-7, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21872826

ABSTRACT

Clinical variables associated with ecotropic viral integration site 1 (EVI1) translocations were evaluated in 42 consecutive chronic myeloid leukemia (CML) patients in myeloid blast crisis (MBC). Translocations were confirmed with fluorescence in situ hybridization, and Western blot analysis demonstrated EVI1 expression. Translocations of EVI1 were present in 3 of 24 (12%) patients whose disease evolved MBC before tyrosine kinase inhibitor (TKI) exposure, and 7 of 18 (39%) patients who had received one or more TKIs. Univariate analysis showed that prior TKI therapy was the only clinical variable that was significantly associated with EVI1 translocation (P = 0.047). TKI-resistant BCR-ABL1 mutations were present in 71% of MBC patients with EVI1 translocations at the time of disease progression. These observations suggest that EVI1 overexpression collaborates with BCR-ABL1 in the evolution of TKI-resistant MBC. Inhibition of c-ABL kinase-mediated DNA double-strand repair by TKIs may predispose to EVI1 translocation in this setting.


Subject(s)
Blast Crisis/genetics , DNA-Binding Proteins/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Protein Kinase Inhibitors/therapeutic use , Protein-Tyrosine Kinases/metabolism , Proto-Oncogenes/genetics , Transcription Factors/genetics , Adult , Aged , Blotting, Western , DNA Breaks, Double-Stranded/drug effects , DNA Repair , DNA-Binding Proteins/metabolism , Drug Resistance, Neoplasm/genetics , Evolution, Molecular , Female , Fusion Proteins, bcr-abl/genetics , Fusion Proteins, bcr-abl/metabolism , Genes, abl , Humans , In Situ Hybridization, Fluorescence , MDS1 and EVI1 Complex Locus Protein , Male , Middle Aged , Mutation , Transcription Factors/metabolism , Translocation, Genetic
20.
PLoS Genet ; 7(7): e1002145, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21765815

ABSTRACT

Forkhead-box protein P2 is a transcription factor that has been associated with intriguing aspects of cognitive function in humans, non-human mammals, and song-learning birds. Heterozygous mutations of the human FOXP2 gene cause a monogenic speech and language disorder. Reduced functional dosage of the mouse version (Foxp2) causes deficient cortico-striatal synaptic plasticity and impairs motor-skill learning. Moreover, the songbird orthologue appears critically important for vocal learning. Across diverse vertebrate species, this well-conserved transcription factor is highly expressed in the developing and adult central nervous system. Very little is known about the mechanisms regulated by Foxp2 during brain development. We used an integrated functional genomics strategy to robustly define Foxp2-dependent pathways, both direct and indirect targets, in the embryonic brain. Specifically, we performed genome-wide in vivo ChIP-chip screens for Foxp2-binding and thereby identified a set of 264 high-confidence neural targets under strict, empirically derived significance thresholds. The findings, coupled to expression profiling and in situ hybridization of brain tissue from wild-type and mutant mouse embryos, strongly highlighted gene networks linked to neurite development. We followed up our genomics data with functional experiments, showing that Foxp2 impacts on neurite outgrowth in primary neurons and in neuronal cell models. Our data indicate that Foxp2 modulates neuronal network formation, by directly and indirectly regulating mRNAs involved in the development and plasticity of neuronal connections.


Subject(s)
Brain/embryology , Forkhead Transcription Factors/genetics , Gene Regulatory Networks , Neurites/metabolism , Repressor Proteins/genetics , Animals , Cell Line, Tumor , Chromatin Immunoprecipitation , Corpus Striatum/growth & development , Gene Expression Profiling , Gene Expression Regulation, Developmental , Mice , Mice, Inbred C57BL , Models, Biological , Mutation , Oligonucleotide Array Sequence Analysis/methods , Primary Cell Culture , RNA, Messenger/genetics , RNA, Messenger/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...