Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
medRxiv ; 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39281736

ABSTRACT

Introduction: DNA methylation (DNAm) predictors of high sensitivity C-reactive protein (CRP) offer a stable and accurate means of assessing chronic inflammation, bypassing the CRP protein fluctuations secondary to acute illness. Poor sleep health is associated with elevated inflammation (including elevated blood CRP levels) which may explain associations of sleep insufficiency with metabolic, cardiovascular and neurological diseases. Our study aims to characterize the relationships among sleep health phenotypes and CRP markers -blood, genetic, and epigenetic indicators- within the Hispanic Community Health Study/Study of Latinos (HCHS/SOL). Methods: In HCHS/SOL, methylation risk scores (MRS)-CRP and polygenetic risk score (PRS)-CRP were constructed separately as weighted sums of methylation beta values or allele counts, respectively, for each individual. Sleep health phenotypes were measured using self-reported questionnaires and objective measurements. Survey-weighted linear regression established the association between the multiple sleep phenotypes (obstructive sleep apnea (OSA), sleep duration, insomnia and excessive sleepiness symptom), cognitive assessments, diabetes and hypertension with CRP markers while adjusting for age, sex, BMI, study center, and the first five principal components of genetic ancestry in HCHS/SOL. Results: We included 2221 HCHS/SOL participants (age range 37-76 yrs, 65.7% female) in the analysis. Both the MRS-CRP (95% confidence interval (CI): 0.32-0.42, p = 3.3 x 10 -38 ) and the PRS-CRP (95% CI: 0.15-0.25, p = 1 x 10 -14 ) were associated with blood CRP level. Moreover, MRS-CRP was associated with sleep health phenotypes (OSA, long sleep duration) and related conditions (diabetes and hypertension), while PRS-CRP markers were not associated with these traits. Circulating CRP level was associated with sleep duration and diabetes. Associations between OSA traits and metabolic comorbidities weakened after adjusting for MRS-CRP, most strongly for diabetes, and least for hypertension. Conclusions: MRS-CRP is a promising estimate for systemic and chronic inflammation as reflected by circulating CRP levels, which either mediates or serves as a common cause of the association between sleep phenotypes and related comorbidities, especially in the presence of diabetes.

2.
medRxiv ; 2024 May 17.
Article in English | MEDLINE | ID: mdl-38798578

ABSTRACT

Sleep is essential to maintaining health and wellbeing of individuals, influencing a variety of outcomes from mental health to cardiometabolic disease. This study aims to assess the relationships between various sleep phenotypes and blood metabolites. Utilizing data from the Hispanic Community Health Study/Study of Latinos, we performed association analyses between 40 sleep phenotypes, grouped in several domains (i.e., sleep disordered breathing (SDB), sleep duration, timing, insomnia symptoms, and heart rate during sleep), and 768 metabolites measured via untargeted metabolomics profiling. Network analysis was employed to visualize and interpret the associations between sleep phenotypes and metabolites. The patterns of statistically significant associations between sleep phenotypes and metabolites differed by superpathways, and highlighted subpathways of interest for future studies. For example, some xenobiotic metabolites were associated with sleep duration and heart rate phenotypes (e.g. 1H-indole-7-acetic acid, 4-allylphenol sulfate), while ketone bodies and fatty acid metabolism metabolites were associated with sleep timing measures (e.g. 3-hydroxybutyrate (BHBA), 3-hydroxyhexanoylcarnitine (1)). Heart rate phenotypes had the overall largest number of detected metabolite associations. Many of these associations were shared with both SDB and with sleep timing phenotypes, while SDB phenotypes shared relatively few metabolite associations with sleep duration measures. A number of metabolites were associated with multiple sleep phenotypes, from a few domains. The amino acids vanillylmandelate (VMA) and 1-carboxyethylisoleucine were associated with the greatest number of sleep phenotypes, from all domains other than insomnia. This atlas of sleep-metabolite associations will facilitate hypothesis generation and further study of the metabolic underpinnings of sleep health.

3.
EBioMedicine ; 84: 104288, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36174398

ABSTRACT

BACKGROUND: Obstructive Sleep Apnoea (OSA) often co-occurs with cardiometabolic and pulmonary diseases. This study is to apply genetic analysis methods to explain the associations between OSA and related phenotypes. METHODS: In the Hispanic Community Healthy Study/Study of Latinos, we estimated genetic correlations ρg between the respiratory event index (REI) and 54 anthropometric, glycemic, cardiometabolic, and pulmonary phenotypes. We used summary statistics from published genome-wide association studies to construct Polygenic Risk Scores (PRSs) representing the genetic basis of each correlated phenotype (ρg>0.2 and p-value<0.05), and of OSA. We studied the association of the PRSs of the correlated phenotypes with both REI and OSA (REI≥5), and the association of OSA PRS with the correlated phenotypes. Causal relationships were tested using Mendelian Randomization (MR) analysis. FINDINGS: The dataset included 11,155 participants, 31.03% with OSA. 22 phenotypes were genetically correlated with REI. 10 PRSs covering obesity and fat distribution (BMI, WHR, WHRadjBMI), blood pressure (DBP, PP, MAP), glycaemic control (fasting insulin, HbA1c, HOMA-B) and insomnia were associated with REI and/or OSA. OSA PRS was associated with BMI, WHR, DBP and glycaemic traits (fasting insulin, HbA1c, HOMA-B and HOMA-IR). MR analysis identified robust causal effects of BMI and WHR on OSA, and probable causal effects of DBP, PP, and HbA1c on OSA/REI. INTERPRETATION: There are shared genetic underpinnings of anthropometric, blood pressure, and glycaemic phenotypes with OSA, with evidence for causal relationships between some phenotypes. FUNDING: Described in Acknowledgments.


Subject(s)
Cardiovascular Diseases , Sleep Apnea, Obstructive , Blood Glucose , Body Mass Index , Cardiovascular Diseases/complications , Cardiovascular Diseases/genetics , Genome-Wide Association Study , Glycated Hemoglobin , Humans , Insulin/genetics , Phenotype , Sleep Apnea, Obstructive/complications , Sleep Apnea, Obstructive/genetics
4.
Am Nat ; 170(4): 567-72, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17891735

ABSTRACT

The frozen niche variation hypothesis suggests that sexuals can coexist with closely related, ecologically similar asexuals because sexuals and narrowly adapted asexual clones use different resources. However, because a collection of clones can potentially dominate the entire resource axis, such coexistence is not stable. We show that if the sexual population inhabits multiple selection regimes and asexuals are intrinsically slightly less fit than sexuals, migration load in the sexual population allows sexuals and asexuals to coexist stably at the regional level. By decreasing sexuals' fitness, migration load allows asexuals to invade the sexual population. However, as the sexuals' range contracts, migration load decreases, preventing asexuals from driving sexuals to extinction. This "buffering" effect of migration load is even more relevant in models that include more realistic conditions, such as demographic asymmetries or explicit spatial structure.


Subject(s)
Ecosystem , Models, Genetic , Reproduction, Asexual/genetics , Reproduction/genetics , Alleles , Animals , Population Dynamics , Selection, Genetic
5.
Evolution ; 58(11): 2452-61, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15612288

ABSTRACT

Effects of maternal environment on offspring performance have been documented frequently in herbivorous insects. Despite this, very few cases exist in which exposure of parent insects to a resource causes the phenotype of their offspring to be adjusted in a manner that is adaptive for that resource, a phenomenon called adaptive transgenerational phenotypic plasticity. I performed a two-generation reciprocal cross-transplant experiment in the field with the soft scale insect Saissetia coffeae (Hemiptera: Coccidae) on two disparate host plant species in order to separate genetic effects from possible transgenerational plasticity. Despite striking differences in quality between host species, maternal host had no effect on overall offspring performance, and I detected no "acclimatization" to the maternal host species. However, there was a significant negative association between maternal and offspring development times, with potentially adaptive implications. Furthermore, offspring of mothers reared in an environment where scale densities were higher and scales were more frequently killed by fungi were significantly less likely to suffer from fungal attack than were offspring of mothers reared in an environment where densities were low and fungal attack was rare. Although S. coffeae does not appear to alter offspring phenotype to increase offspring fitness on these two distinct plant species, it does appear that offspring phenotype may be responding to some subtler aspects of maternal environment. In particular, the possibility of induced transgenerational prophylaxis in S. coffeae deserves further investigation.


Subject(s)
Acclimatization/physiology , Environment , Hemiptera/physiology , Maternal Behavior/physiology , Phenotype , Analysis of Variance , Animals , Body Weights and Measures , Costa Rica , Female , Hemiptera/genetics , Host-Parasite Interactions , Plants/parasitology , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL