Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
Add more filters










Publication year range
1.
Comp Immunol Microbiol Infect Dis ; 73: 101490, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33068875

ABSTRACT

Brucella melitensis is an intracellular bacteria causing disease in humans as an incidental host. The infection initiates as acute flu-like symptoms and may transform into a chronic cyclic infection. This cyclic infection may be partly due to the bacteria's ability to persist within antigen presenting cells and evade the CD8 + T cell response over long periods of time. This research aims to characterize the immune response of the acute and chronic forms of brucellosis in the murine liver and spleen. We also sought to determine if the exhaustion of the CD8 + T cells was a permanent or temporary change. This was accomplished by using adoptive transfer of acutely infected CD8 + T cells and chronically infected CD8 + T cells into a naïve host followed by re-infection. The histological examination presented supports the concept that exhausted T-cells can regain function through evidence of granulomatous inflammation after virulent challenge in a new host environment.


Subject(s)
Brucella melitensis , Brucellosis/immunology , Liver/immunology , Spleen/immunology , Acute Disease , Animals , Brucellosis/pathology , CD8-Positive T-Lymphocytes/immunology , Chronic Disease , Disease Models, Animal , Female , Liver/pathology , Mice , Mice, Inbred BALB C , Microscopy/methods , Spleen/pathology
2.
PLoS Pathog ; 16(10): e1009020, 2020 10.
Article in English | MEDLINE | ID: mdl-33108406

ABSTRACT

Brucellosis, caused by a number of Brucella species, remains the most prevalent zoonotic disease worldwide. Brucella establish chronic infections within host macrophages despite triggering cytosolic innate immune sensors, including Stimulator of Interferon Genes (STING), which potentially limit infection. In this study, STING was required for control of chronic Brucella infection in vivo. However, early during infection, Brucella down-regulated STING mRNA and protein. Down-regulation occurred post-transcriptionally, required live bacteria, the Brucella type IV secretion system, and was independent of host IRE1-RNase activity. STING suppression occurred in MyD88-/- macrophages and was not induced by Toll-like receptor agonists or purified Brucella lipopolysaccharide (LPS). Rather, Brucella induced a STING-targeting microRNA, miR-24-2, in a type IV secretion system-dependent manner. Furthermore, STING downregulation was inhibited by miR-24 anti-miRs and in Mirn23a locus-deficient macrophages. Failure to suppress STING expression in Mirn23a-/- macrophages correlated with diminished Brucella replication, and was rescued by exogenous miR-24. Mirn23a-/- mice were also more resistant to splenic colonization one week post infection. Anti-miR-24 potently suppressed replication in wild type, but much less in STING-/- macrophages, suggesting most of the impact of miR-24 induction on replication occurred via STING suppression. In summary, Brucella sabotages cytosolic surveillance by miR-24-dependent suppression of STING expression; post-STING activation "damage control" via targeted STING destruction may enable establishment of chronic infection.


Subject(s)
Brucella/metabolism , Brucellosis/metabolism , Membrane Proteins/biosynthesis , MicroRNAs/metabolism , Animals , Brucella/genetics , Brucellosis/genetics , Female , Host-Pathogen Interactions/immunology , Macrophages/immunology , Male , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , MicroRNAs/genetics , RNA, Messenger/genetics , Type IV Secretion Systems/genetics , Type IV Secretion Systems/metabolism
4.
J Immunol ; 202(9): 2671-2681, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30894428

ABSTRACT

Brucella abortus is a facultative intracellular bacterium that causes brucellosis, a prevalent zoonosis that leads to abortion and infertility in cattle, and undulant fever, debilitating arthritis, endocarditis, and meningitis in humans. Signaling pathways triggered by B. abortus involves stimulator of IFN genes (STING), which leads to production of type I IFNs. In this study, we evaluated the pathway linking the unfolded protein response (UPR) and the endoplasmic reticulum-resident transmembrane molecule STING, during B. abortus infection. We demonstrated that B. abortus infection induces the expression of the UPR target gene BiP and XBP1 in murine macrophages through a STING-dependent pathway. Additionally, we also observed that STING activation was dependent on the bacterial second messenger cyclic dimeric GMP. Furthermore, the Brucella-induced UPR is crucial for induction of multiple molecules linked to type I IFN signaling pathway, such as IFN-ß, IFN regulatory factor 1, and guanylate-binding proteins. Furthermore, IFN-ß is also important for the UPR induction during B. abortus infection. Indeed, IFN-ß shows a synergistic effect in inducing the IRE1 axis of the UPR. In addition, priming cells with IFN-ß favors B. abortus survival in macrophages. Moreover, Brucella-induced UPR facilitates bacterial replication in vitro and in vivo. Finally, these results suggest that B. abortus-induced UPR is triggered by bacterial cyclic dimeric GMP, in a STING-dependent manner, and that this response supports bacterial replication. In summary, association of STING and IFN-ß signaling pathways with Brucella-induced UPR unravels a novel link between innate immunity and endoplasmic reticulum stress that is crucial for bacterial infection outcome.


Subject(s)
Brucella abortus/physiology , Brucellosis/immunology , Host-Pathogen Interactions/immunology , Membrane Proteins/immunology , Nucleotides, Cyclic/immunology , Unfolded Protein Response/immunology , Animals , Brucellosis/genetics , Host-Pathogen Interactions/genetics , Humans , Membrane Proteins/genetics , Mice , Mice, Knockout , Nucleotides, Cyclic/genetics , Signal Transduction/genetics , Signal Transduction/immunology
5.
Infect Immun ; 86(7)2018 07.
Article in English | MEDLINE | ID: mdl-29735518

ABSTRACT

Brucella spp. are intracellular pathogenic bacteria remarkable in their ability to escape immune surveillance and therefore inflict a state of chronic disease within the host. To enable further immune response studies, Brucella was engineered to express the well-characterized chicken ovalbumin (OVA). Surprisingly, we found that CD8 T cells bearing T cell receptors (TCR) nominally specific for the OVA peptide SIINFEKL (OT-1) reacted to parental Brucella-infected targets as well as OVA-expressing Brucella variants in cytotoxicity assays. Furthermore, splenocytes from Brucella-immunized mice produced gamma interferon (IFN-γ) and exhibited cytotoxicity in response to SIINFEKL-pulsed target cells.To determine if the SIINFEKL-reactive OT-1 TCR could be cross-reacting to Brucella peptides, we searched the Brucella proteome using an algorithm to generate a list of near-neighbor nonamer peptides that would bind to H2Kb Selecting five Brucella peptide candidates, along with controls, we verified that several of these peptides mimicked SIINFEKL, resulting in T cell activation through the "SIINFEKL-specific" TCR. Activation was dependent on peptide concentration as well as sequence. Our results underscore the complexity and ubiquity of cross-reactivity in T cell recognition. This cross-reactivity may enable microbes such as Brucella to escape immune surveillance by presenting peptides similar to those of the host and may also lead to the activation of autoreactive T cells.


Subject(s)
Antigen Presentation , Brucella/immunology , Histocompatibility Antigens Class I/immunology , Lymphocyte Activation , Ovalbumin/immunology , Receptors, Antigen, T-Cell/immunology , T-Lymphocytes/immunology , Animals , Antigens, Bacterial/immunology , Cross Reactions , Immune Evasion , Mice , Mice, Inbred C57BL , Peptide Fragments/immunology
6.
J Immunol ; 200(2): 607-622, 2018 01 15.
Article in English | MEDLINE | ID: mdl-29203515

ABSTRACT

Immunity against microbes depends on recognition of pathogen-associated molecular patterns by innate receptors. Signaling pathways triggered by Brucella abortus DNA involves TLR9, AIM2, and stimulator of IFN genes (STING). In this study, we observed by microarray analysis that several type I IFN-associated genes, such as IFN-ß and guanylate-binding proteins (GBPs), are downregulated in STING knockout (KO) macrophages infected with Brucella or transfected with DNA. Additionally, we determined that STING and cyclic GMP-AMP synthase (cGAS) are important to engage the type I IFN pathway, but only STING is required to induce IL-1ß secretion, caspase-1 activation, and GBP2 and GBP3 expression. Furthermore, we determined that STING but not cGAS is critical for host protection against Brucella infection in macrophages and in vivo. This study provides evidence of a cGAS-independent mechanism of STING-mediated protection against an intracellular bacterial infection. Additionally, infected IFN regulatory factor-1 and IFNAR KO macrophages had reduced GBP2 and GBP3 expression and these cells were more permissive to Brucella replication compared with wild-type control macrophages. Because GBPs are critical to target vacuolar bacteria, we determined whether GBP2 and GBPchr3 affect Brucella control in vivo. GBPchr3 but not GBP2 KO mice were more susceptible to bacterial infection, and small interfering RNA treated-macrophages showed reduction in IL-1ß secretion and caspase-1 activation. Finally, we also demonstrated that Brucella DNA colocalizes with AIM2, and AIM2 KO mice are less resistant to B. abortus infection. In conclusion, these findings suggest that the STING-dependent type I IFN pathway is critical for the GBP-mediated release of Brucella DNA into the cytosol and subsequent activation of AIM2.


Subject(s)
Brucella abortus/immunology , Brucellosis/immunology , Brucellosis/metabolism , GTP-Binding Proteins/metabolism , Inflammasomes/metabolism , Membrane Proteins/metabolism , Signal Transduction , Animals , Brucella abortus/genetics , Brucellosis/genetics , Brucellosis/microbiology , Cyclic GMP/analogs & derivatives , Cyclic GMP/metabolism , Cytokines/metabolism , GTP-Binding Proteins/genetics , Gene Expression , Gene Expression Profiling , Granuloma/metabolism , Granuloma/microbiology , Granuloma/pathology , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Immunity, Innate , Inflammation Mediators , Interferon Regulatory Factor-3/metabolism , Interferon Type I/genetics , Interferon Type I/metabolism , Macrophages/immunology , Macrophages/metabolism , Membrane Proteins/genetics , Mice , Mice, Knockout , Models, Biological , NF-kappa B/metabolism
7.
J Immunol ; 200(2): 704-714, 2018 01 15.
Article in English | MEDLINE | ID: mdl-29222167

ABSTRACT

Cytoplasmic linker protein 170 (CLIP170) is a CAP-Gly domain-containing protein that is associated with the plus end of growing microtubules and implicated in various cellular processes, including the regulation of microtubule dynamics, cell migration, and intracellular transport. Our studies revealed a previously unrecognized property and role of CLIP170. We identified CLIP170 as one of the interacting partners of Brucella effector protein TcpB that negatively regulates TLR2 and TLR4 signaling. In this study, we demonstrate that CLIP170 interacts with the TLR2 and TLR4 adaptor protein TIRAP. Furthermore, our studies revealed that CLIP170 induces ubiquitination and subsequent degradation of TIRAP to negatively regulate TLR4-mediated proinflammatory responses. Overexpression of CLIP170 in mouse macrophages suppressed the LPS-induced expression of IL-6 and TNF-α whereas silencing of endogenous CLIP170 potentiated the levels of proinflammatory cytokines. In vivo silencing of CLIP170 in C57BL/6 mice by CLIP170-specific small interfering RNA enhanced LPS-induced IL-6 and TNF-α expression. Furthermore, we found that LPS modulates the expression of CLIP170 in mouse macrophages. Overall, our experimental data suggest that CLIP170 serves as an intrinsic negative regulator of TLR4 signaling that targets TIRAP.


Subject(s)
Membrane Glycoproteins/metabolism , Microtubule-Associated Proteins/metabolism , Neoplasm Proteins/metabolism , Receptors, Interleukin-1/metabolism , Signal Transduction , Toll-Like Receptor 4/metabolism , Animals , Biomarkers , Cell Line , Cytokines/metabolism , Gene Expression , Gene Silencing , Humans , Immunohistochemistry , Inflammation Mediators/metabolism , Lipopolysaccharides , Macrophages/immunology , Macrophages/metabolism , Mice , Microtubule-Associated Proteins/genetics , NF-kappa B/metabolism , Neoplasm Proteins/genetics , Protein Binding , Proteolysis , RNA Interference , RNA, Small Interfering/genetics , Ubiquitination
8.
Front Microbiol ; 8: 2217, 2017.
Article in English | MEDLINE | ID: mdl-29184543

ABSTRACT

The microtubule (MT) cytoskeleton regulates several cellular processes related to the immune system. For instance, an intricate intracellular transport mediated by MTs is responsible for the proper localization of vesicular receptors of innate immunity and its adaptor proteins. In the present study, we used nocodazole to induce MTs depolymerization and paclitaxel or recombinant (r) TIR (Toll/interleukin-1 receptor) domain containing protein (TcpB) to induce MT stabilization in bone marrow-derived macrophages infected with Brucella abortus. Following treatment of the cells, we evaluated their effects on pathogen intracellular replication and survival, and in pro-inflammatory cytokine production. First, we observed that intracellular trafficking and maturation of Brucella-containing vesicles (BCVs) is affected by partial destabilization or stabilization of the MTs network. A typical marker of early BCVs, LAMP-1, is retained in late BCVs even 24 h after infection in the presence of low doses of nocodazole or paclitaxel and in the presence of different amounts of rTcpB. Second, microscopy and colony forming unit analysis revealed that bacterial load was increased in infected macrophages treated with lower doses of nocodazole or paclitaxel and with rTcpB compared to untreated cells. Third, innate immune responses were also affected by disturbing MT dynamics. MT depolymerization by nocodazole reduced IL-12 production in infected macrophages. Conversely, rTcpB-treated cells augmented IL-12 and IL-1ß secretion in infected cells. In summary, these findings demonstrate that modulation of MTs affects several crucial steps of B. abortus pathogenesis, including BCV maturation, intracellular survival and IL-12 secretion in infected macrophages.

9.
Infect Immun ; 84(12): 3458-3470, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27672085

ABSTRACT

Brucella species are facultative intracellular bacteria that cause brucellosis, a chronic debilitating disease significantly impacting global health and prosperity. Much remains to be learned about how Brucella spp. succeed in sabotaging immune host cells and how Brucella spp. respond to environmental challenges. Multiple types of bacteria employ the prokaryotic second messenger cyclic di-GMP (c-di-GMP) to coordinate responses to shifting environments. To determine the role of c-di-GMP in Brucella physiology and in shaping host-Brucella interactions, we utilized c-di-GMP regulatory enzyme deletion mutants. Our results show that a ΔbpdA phosphodiesterase mutant producing excess c-di-GMP displays marked attenuation in vitro and in vivo during later infections. Although c-di-GMP is known to stimulate the innate sensor STING, surprisingly, the ΔbpdA mutant induced a weaker host immune response than did wild-type Brucella or the low-c-di-GMP guanylate cyclase ΔcgsB mutant. Proteomics analysis revealed that c-di-GMP regulates several processes critical for virulence, including cell wall and biofilm formation, nutrient acquisition, and the type IV secretion system. Finally, ΔbpdA mutants exhibited altered morphology and were hypersensitive to nutrient-limiting conditions. In summary, our results indicate a vital role for c-di-GMP in allowing Brucella to successfully navigate stressful and shifting environments to establish intracellular infection.


Subject(s)
Brucella/pathogenicity , Brucellosis/microbiology , Cyclic GMP/analogs & derivatives , Adaptation, Physiological , Animals , Biofilms , Brucella/metabolism , Brucella/ultrastructure , Brucellosis/pathology , Cells, Cultured , Cyclic GMP/genetics , Cyclic GMP/metabolism , Genetic Fitness , Macrophages/metabolism , Macrophages/microbiology , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Mutation , Type IV Secretion Systems , Virulence
10.
J Leukoc Biol ; 99(5): 771-80, 2016 05.
Article in English | MEDLINE | ID: mdl-26578650

ABSTRACT

Brucella abortus is a Gram-negative intracellular bacterial pathogen that causes a zoonosis of worldwide occurrence, leading to undulant fever in humans and abortion in domestic animals. B. abortus is recognized by several pattern-recognition receptors triggering pathways during the host innate immune response. Therefore, here, we determined the cooperative role of TLR9 with TLR2 or TLR6 receptors in sensing Brucella Furthermore, we deciphered the host innate immune response against B. abortus or its DNA, emphasizing the role of TLR9-MAPK/NF-κB signaling pathways in the production of proinflammatory cytokines. TLR9 is required for the initial host control of B. abortus, but this TLR was dispensable after 6 wk of infection. The susceptibility of TLR9(-/-)-infected animals to Brucella paralleled with lower levels of IFN-γ produced by mouse splenocytes stimulated with this pathogen compared with wild-type cells. However, no apparent cooperative interplay was observed between TLR2-TLR9 or TLR6-TLR9 receptors to control infection. Moreover, B. abortus or its DNA induced activation of MAPK/NF-κB pathways and production of IL-12 and TNF-α by macrophages partially dependent on TLR9 but completely dependent on MyD88. In addition, B. abortus-derived CpG oligonucleotides required TLR9 to promote IL-12 and TNF-α production by macrophages. By confocal microscopy, we demonstrated that TLR9 redistributed and colocalized with lysosomal-associated membrane protein-1 upon Brucella infection. Thus, B. abortus induced TLR9 traffic, leading to cell signaling activation and IL-12 and TNF-α production. Although TLR9 recognized Brucella CpG motifs, our results suggest a new pathway of B. abortus DNA-activating macrophages independent of TLR9.


Subject(s)
Brucella abortus/immunology , Disease Resistance/immunology , Host-Pathogen Interactions , Mitogen-Activated Protein Kinases/metabolism , NF-kappa B/metabolism , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 6/metabolism , Toll-Like Receptor 9/metabolism , Animals , Brucellosis/microbiology , Brucellosis/pathology , DNA, Bacterial/metabolism , Interferon-gamma/biosynthesis , Interleukin-12/biosynthesis , Macrophages/metabolism , Mice, Inbred C57BL , Oligodeoxyribonucleotides/metabolism , Signal Transduction , Spleen/metabolism , Spleen/pathology , Tumor Necrosis Factor-alpha/biosynthesis
11.
Adv Biochem Eng Biotechnol ; 154: 119-45, 2016.
Article in English | MEDLINE | ID: mdl-25395174

ABSTRACT

: Bioluminescence imaging (BLI) of bacteria was primarily designed to permit real-time, sensitive, and noninvasive monitoring of the progression of infection in live animals. Generally, BLI relies on the construction of bacterial strains that possess the lux operon. The lux operon is composed of a set of genes that encode the luciferase enzyme and its cognate substrate, which interact to produce light-a phenomenon that is referred to as bioluminescence. Bioluminescence emitted by the bacteria can then be detected and imaged within a living host using sensitive charge-coupled device (CCD) cameras. In comparison to traditional host-pathogen studies, BLI offers the opportunity for extended monitoring of infected animals without resorting to euthanasia and extensive tissue processing at each time point. Therefore, BLI can reduce the number of animals required to generate meaningful data, while significantly contributing to the understanding of pathogenesis in the host and, subsequently, the development and evaluation of adequate vaccines and therapeutics. BLI is also useful in characterizing the interactions of pathogens with plants and the para-host environment. In this chapter, we demonstrate the broad application of BLI for studying bacterial pathogens in different niches. Furthermore, we will specifically focus on the use of BLI to characterize the following: (1) the pathogenesis of Brucella melitensis in mice (animal host), and (2) the progression of infection of Clavibacter michiganensis subsp. michiganensis in tomatoes (plant host). These studies will provide an overview of the wide potential of BLI and its role in enhancing the study of unique-and sometimes difficult-to-characterize-bacterial pathogens.


Subject(s)
Bacteria/pathogenicity , Luminescence , Luminescent Measurements , Animals , Luciferases , Mice , Plant Diseases/microbiology , Plants/microbiology
12.
Infect Immun ; 83(12): 4759-71, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26416901

ABSTRACT

Brucella melitensis is a well-adapted zoonotic pathogen considered a scourge of mankind since recorded history. In some cases, initial infection leads to chronic and reactivating brucellosis, incurring significant morbidity and economic loss. The mechanism by which B. melitensis subverts adaptive immunological memory is poorly understood. Previous work has shown that Brucella-specific CD8(+) T cells express gamma interferon (IFN-γ) and can transition to long-lived memory cells but are not polyfunctional. In this study, chronic infection of mice with B. melitensis led to CD8(+) T cell exhaustion, manifested by programmed cell death 1 (PD-1) and lymphocyte activation gene 3 (LAG-3) expression and a lack of IFN-γ production. The B. melitensis-specific CD8(+) T cells that produced IFN-γ expressed less IFN-γ per cell than did CD8(+) cells from uninfected mice. Both memory precursor (CD8(+) LFA1(HI) CD127(HI) KLRG1(LO)) and long-lived memory (CD8(+) CD27(HI) CD127(HI) KLRG1(LO)) cells were identified during chronic infection. Interestingly, after adoptive transfer, mice receiving cells from chronically infected animals were able to contain infection more rapidly than recipients of cells from acutely infected or uninfected donors, although the proportions of exhausted CD8(+) T cells increased after adoptive transfer in both challenged and unchallenged recipients. CD8(+) T cells of challenged recipients initially retained the stunted IFN-γ production found prior to transfer, and cells from acutely infected mice were never seen to transition to either memory subset at all time points tested, up to 30 days post-primary infection, suggesting a delay in the generation of memory. Here we have identified defects in Brucella-responsive CD8(+) T cells that allow chronic persistence of infection.


Subject(s)
Brucella melitensis/immunology , Brucellosis/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Clonal Anergy , Immunologic Memory , Adaptive Immunity , Adoptive Transfer , Animals , Antigens, CD/genetics , Antigens, CD/immunology , Brucella melitensis/pathogenicity , Brucellosis/genetics , Brucellosis/microbiology , Brucellosis/pathology , CD4-Positive T-Lymphocytes/microbiology , CD4-Positive T-Lymphocytes/pathology , CD4-Positive T-Lymphocytes/transplantation , CD8-Positive T-Lymphocytes/microbiology , CD8-Positive T-Lymphocytes/pathology , CD8-Positive T-Lymphocytes/transplantation , Chronic Disease , Female , Gene Expression Regulation , Host-Pathogen Interactions , Interferon-gamma/genetics , Interferon-gamma/immunology , Lymphocyte Count , Mice , Mice, Inbred BALB C , Programmed Cell Death 1 Receptor/genetics , Programmed Cell Death 1 Receptor/immunology , Signal Transduction , Lymphocyte Activation Gene 3 Protein
13.
Pathog Dis ; 73(2): 1-8, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25132657

ABSTRACT

Brucella species utilize diverse virulence factors. Previously, Brucella abortus light-sensing histidine kinase was identified as important for cellular infection. Here, we demonstrate that a Brucella melitensis LOV-HK (BM-LOV-HK) mutant strain has strikingly different gene expression than wild type. General stress response genes including the alternative sigma factor rpoE1 and its anti-anti-sigma factor phyR were downregulated, while flagellar, quorum sensing (QS), and type IV secretion system genes were upregulated in the ΔBM-LOV-HK strain vs. wild type. Contextually, expression results agree with other studies of transcriptional regulators involving ΔrpoE1, ΔphyR, ΔvjbR, and ΔblxR (ΔbabR) Brucella strains. Additionally, deletion of BM-LOV-HK decreases virulence in mice. During C57BL/6 mouse infection, the ΔBM-LOV-HK strain had 2 logs less CFUs in the spleen 3 days postinfection, but similar levels 6 days post infection compared to wild type. Infection of IRF-1(-/-) mice more specifically define ΔBM-LOV-HK strain attenuation with fewer bacteria in spleens and significantly increased survival of mutant vs. wild-type infected IRF-1(-/-) mice. Upregulation of flagella, QS, and VirB genes, along with downregulation of rpoE1 and related sigma factor, rpoH2 (BMEI0280) suggest that BM-LOV-HK modulates both QS and general stress response regulatory components to control Brucella gene expression on a global level.


Subject(s)
Brucella melitensis/enzymology , Brucella melitensis/growth & development , Brucellosis/pathology , Gene Expression Regulation, Bacterial , Protein Kinases/metabolism , Virulence Factors/metabolism , Animals , Bacterial Load , Brucella melitensis/genetics , Brucellosis/microbiology , Disease Models, Animal , Gene Expression Profiling , Gene Knockout Techniques , Histidine Kinase , Mice, Inbred C57BL , Protein Kinases/deficiency , Spleen/microbiology , Survival Analysis , Virulence , Virulence Factors/deficiency
14.
Front Microbiol ; 5: 662, 2014.
Article in English | MEDLINE | ID: mdl-25538689

ABSTRACT

Staphylococcus aureus, sequence type (ST) 398, is an emerging pathogen and the leading cause of livestock-associated methicillin-resistant S. aureus infections in Europe and North America. This strain is characterized by high promiscuity in terms of host-species and also lacks several traditional S. aureus virulence factors. This does not, however, explain the apparent ease with which it crosses species-barriers. Recently, TIR-domain containing proteins (Tcps) which inhibit the innate immune response were identified in some Gram-negative bacteria. Here we report the presence of two proteins, S. aureus TIR-like Protein 1 (SaTlp1) and S. aureus TIR-like Protein 2 (SaTlp2), expressed by ST398 which contain domain of unknown function 1863 (DUF1863), similar to the Toll/IL-1 receptor (TIR) domain. In contrast to the Tcps in Gram-negative bacteria, our data suggest that SaTlp1 and SaTlp2 increase activation of the transcription factor NF-κB as well as downstream pro-inflammatory cytokines and immune effectors. To assess the role of both proteins as potential virulence factors knock-out mutants were created. These showed a slightly enhanced survival rate in a murine infectious model compared to the wild-type strain at one dose. Our data suggest that both proteins may act as factors contributing to the enhanced ability of ST398 to cross species-barriers.

15.
Methods Mol Biol ; 1197: 67-85, 2014.
Article in English | MEDLINE | ID: mdl-25172275

ABSTRACT

Despite progress in mouse models of bacterial pathogens, studies are often limited by evaluating infections in an individual organ or tissue or at a given time. Here we present a technique to engineer the pathogen, e.g., Brucella melitensis, with a bioluminescent marker permitting analysis of living bacteria in real time during the infectious process from acute to chronic infection. Using this bioluminescent approach, tissue preference, differences between virulent and mutant bacteria, as well as the response of the bacteria to host metabolites can provide extraordinary data enhancing our understanding of host-pathogen interactions.


Subject(s)
Brucella melitensis/physiology , Diagnostic Imaging , Host-Pathogen Interactions , Animals , Brucellosis/pathology , Disease Models, Animal , Mice
16.
Genome Announc ; 2(3)2014 May 29.
Article in English | MEDLINE | ID: mdl-24874680

ABSTRACT

Brucella spp. are facultative intracellular bacterial pathogens causing the zoonotic disease brucellosis. Here, we report the draft genome sequence of the Brucella melitensis strain from India designated Bm IND1, isolated from stomach contents of an aborted goat fetus.

17.
PLoS Pathog ; 9(12): e1003785, 2013.
Article in English | MEDLINE | ID: mdl-24339776

ABSTRACT

Brucella melitensis is a facultative intracellular bacterium that causes brucellosis, the most prevalent zoonosis worldwide. The Brucella intracellular replicative niche in macrophages and dendritic cells thwarts immune surveillance and complicates both therapy and vaccine development. Currently, host-pathogen interactions supporting Brucella replication are poorly understood. Brucella fuses with the endoplasmic reticulum (ER) to replicate, resulting in dramatic restructuring of the ER. This ER disruption raises the possibility that Brucella provokes an ER stress response called the Unfolded Protein Response (UPR). In this study, B. melitensis infection up regulated expression of the UPR target genes BiP, CHOP, and ERdj4, and induced XBP1 mRNA splicing in murine macrophages. These data implicate activation of all 3 major signaling pathways of the UPR. Consistent with previous reports, XBP1 mRNA splicing was largely MyD88-dependent. However, up regulation of CHOP, and ERdj4 was completely MyD88 independent. Heat killed Brucella stimulated significantly less BiP, CHOP, and ERdj4 expression, but induced XBP1 splicing. Although a Brucella VirB mutant showed relatively intact UPR induction, a TcpB mutant had significantly compromised BiP, CHOP and ERdj4 expression. Purified TcpB, a protein recently identified to modulate microtubules in a manner similar to paclitaxel, also induced UPR target gene expression and resulted in dramatic restructuring of the ER. In contrast, infection with the TcpB mutant resulted in much less ER structural disruption. Finally, tauroursodeoxycholic acid, a pharmacologic chaperone that ameliorates the UPR, significantly impaired Brucella replication in macrophages. Together, these results suggest Brucella induces a UPR, via TcpB and potentially other factors, that enables its intracellular replication. Thus, the UPR may provide a novel therapeutic target for the treatment of brucellosis. These results also have implications for other intracellular bacteria that rely on host physiologic stress responses for replication.


Subject(s)
Bacterial Proteins/physiology , Brucella melitensis/physiology , Macrophages/metabolism , Macrophages/microbiology , Unfolded Protein Response , Virulence Factors/physiology , Animals , Brucellosis/metabolism , Brucellosis/microbiology , Cells, Cultured , Dogs , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Microbial Viability
18.
Dis Model Mech ; 6(3): 811-8, 2013 May.
Article in English | MEDLINE | ID: mdl-23519029

ABSTRACT

Brucellosis, a frequent bacterial zoonosis, can produce debilitating chronic disease with involvement of multiple organs in human patients. Whereas acute brucellosis is well studied using the murine animal model, long-term complications of host-pathogen interaction remain largely elusive. Human brucellosis frequently results in persistent, chronic osteoarticular system involvement, with complications such as arthritis, spondylitis and sacroiliitis. Here, we focused on identifying infectious sites in the mouse that parallel Brucella melitensis foci observed in patients. In vivo imaging showed rapid bacterial dispersal to multiple sites of the murine axial skeleton. In agreement with these findings, immunohistochemistry revealed the presence of bacteria in bones and limbs, and in the lower spine vertebrae of the axial skeleton where they were preferentially located in the bone marrow. Surprisingly, some animals developed arthritis in paws and spine after infection, but without obvious bacteria in these sites. The identification of Brucella in the bones of mice corroborates the findings in humans that these osteoarticular sites are important niches for the persistence of Brucella in the host, but the mechanisms that mediate pathological manifestations in these sites remain unclear. Future studies addressing the immune responses within osteoarticular tissue foci could elucidate important tissue injury mediators and Brucella survival strategies.


Subject(s)
Bone and Bones/microbiology , Bone and Bones/pathology , Brucellosis/microbiology , Brucellosis/pathology , Joints/microbiology , Joints/pathology , Animals , Arthritis/microbiology , Arthritis/pathology , Bone Marrow/microbiology , Bone Marrow/pathology , Brucella melitensis/physiology , Female , Host-Pathogen Interactions , Humans , Liver/microbiology , Liver/pathology , Mice , Mice, Inbred BALB C , Spleen/microbiology , Spleen/pathology
19.
Microbes Infect ; 15(6-7): 440-9, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23421980

ABSTRACT

Erythritol is a four-carbon sugar preferentially utilized by Brucella spp. The presence of erythritol in the placentas of goats, cows, and pigs has been used to explain the localization of Brucella to these sites and the subsequent accumulation of large amounts of bacteria, eventually leading to abortion. Here we show that Brucella melitensis will also localize to an artificial site of erythritol within a mouse, providing a potential model system to study the pathogenesis of Brucella abortion. Immunohistological staining of the sites of erythritol within infected mice indicated a higher than expected proportion of extracellular bacteria. Ensuing experiments suggested intracellular B. melitensis was unable to replicate within macrophages in the presence of erythritol and that erythritol was able to reach the site of intracellular bacteria. The intracellular inhibition of growth was found to encourage the bacteria to replicate extracellularly rather than intracellularly, a particularly interesting development in Brucella pathogenesis. To determine the effect of erythritol on expression of B. melitensis genes, bacteria grown either with or without erythritol were analyzed by microarray. Two major virulence pathways were up-regulated in response to exposure to erythritol (the type IV secretion system VirB and flagellar proteins), suggesting a role for erythritol in virulence.


Subject(s)
Brucella melitensis/metabolism , Brucella melitensis/pathogenicity , Brucellosis/microbiology , Brucellosis/pathology , Erythritol/metabolism , Gene Expression Regulation, Bacterial/drug effects , Virulence Factors/biosynthesis , Animals , Disease Models, Animal , Gene Expression Profiling , Macrophages/microbiology , Mice , Microarray Analysis
20.
PLoS One ; 7(4): e34925, 2012.
Article in English | MEDLINE | ID: mdl-22558103

ABSTRACT

Brucellosis is a common zoonotic disease that remains endemic in many parts of the world. Dissecting the host immune response during this disease provides insight as to why brucellosis is often difficult to resolve. We used a Brucella epitope specific in vivo killing assay to investigate the ability of CD8+ T cells to kill targets treated with purified pathogenic protein. Importantly, we found the pathogenic protein TcpB to be a novel effector of adaptive immune evasion by inhibiting CD8+ T cell killing of Brucella epitope specific target cells in mice. Further, BALB/c mice show active Brucella melitensis infection beyond one year, many with previously unreported focal infection of the urogenital area. A fraction of CD8+ T cells show a CD8+ Tmem phenotype of LFA-1hi, CD127hi, KLRG-1lo during the course of chronic brucellosis, while the CD8+ T cell pool as a whole had a very weak polyfunctional cytokine response with diminished co-expression of IFN-γ with TNFα and/or IL-2, a hallmark of exhaustion. When investigating the expression of these 3 cytokines individually, we observed significant IFN-γ expression at 90 and 180 days post-infection. TNFα expression did not significantly exceed or fall below background levels at any time. IL-2 expression did not significantly exceeded background, but, interestingly, did fall significantly below that of uninfected mice at 180 days post-infection. Brucella melitensis evades and blunts adaptive immunity during acute infection and our findings provide potential mechanisms for the deficit observed in responding CD8+ T cells during chronic brucellosis.


Subject(s)
Adaptive Immunity/immunology , Brucellosis/immunology , Brucellosis/physiopathology , Fimbriae Proteins/immunology , Immune Evasion/immunology , T-Lymphocytes, Cytotoxic/immunology , Analysis of Variance , Animals , Cytokines/metabolism , Female , Flow Cytometry , Immunophenotyping , Interferon-gamma/metabolism , Interleukin-2/metabolism , Mice , Mice, Inbred BALB C , T-Lymphocytes, Cytotoxic/metabolism , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...