Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters











Publication year range
1.
J Leukoc Biol ; 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39120532

ABSTRACT

The knowledge about the contribution of the innate immune system to health and disease is expanding. However, to obtain reliable results, it is critical to select appropriate mouse models for in vivo studies. Data on genetic and phenotypic changes associated with different mouse strains can assist in this task. Such data can also facilitate our understanding of how specific polymorphisms and genetic alterations affect gene function, phenotypes, and disease outcomes. Extensive information is available on genetic changes in all major mouse strains. However, comparatively little is known about their impact on immune response and in particular on innate immunity. Here, we analyzed a mouse model of chronic multifocal osteomyelitis (CMO), an autoinflammatory disease driven exclusively by the innate immune system, which is caused by an inactivating mutation in the Pstpip2 gene. We investigated how the genetic background of BALB/c, C57BL/6J, and C57BL/6NCrl strains alters the molecular mechanisms controlling disease progression. While all mice developed the disease, symptoms were significantly milder in BALB/c and partially also in C57BL/6J when compared to C57BL/6NCrl. Disease severity correlated with the number of infiltrating neutrophils and monocytes and with the production of chemokines attracting these cells to the site of inflammation. It also correlated with increased expression of genes associated with autoinflammation, rheumatoid arthritis, neutrophil activation, and degranulation, resulting in altered neutrophil activation in vivo. Together, our data demonstrate striking effects of genetic background on multiple parameters of neutrophil function and activity influencing the onset and course of the CMO disease.

2.
Front Endocrinol (Lausanne) ; 15: 1286365, 2024.
Article in English | MEDLINE | ID: mdl-39129916

ABSTRACT

Introduction: Fibroblast growth factor 20 (Fgf20), a member of the Fgf9 subfamily, was identified as an important regulator of bone differentiation and homeostasis processes. However, the role of Fgf20 in bone physiology has not been approached yet. Here we present a comprehensive bone phenotype analysis of mice with functional ablation of Fgf20. Methods: The study conducts an extensive analysis of Fgf20 knockout mice compared to controls, incorporating microCT scanning, volumetric analysis, Fgf9 subfamily expression and stimulation experiment and histological evaluation. Results: The bone phenotype could be detected especially in the area of​ the lumbar and caudal part of the spine and in fingers. Regarding the spine, Fgf20-/- mice exhibited adhesions of the transverse process of the sixth lumbar vertebra to the pelvis as well as malformations in the distal part of their tails. Preaxial polydactyly and polysyndactyly in varying degrees of severity were also detected. High resolution microCT analysis of distal femurs and the fourth lumbar vertebra showed significant differences in structure and mineralization in both cortical and trabecular bone. These findings were histologically validated and may be associated with the expression of Fgf20 in chondrocytes and their progenitors. Moreover, histological sections demonstrated increased bone tissue formation, disruption of Fgf20-/- femur cartilage, and cellular-level alterations, particularly in osteoclasts. We also observed molar dysmorphology, including root taurodontism, and described variations in mineralization and dentin thickness. Discussion: Our analysis provides evidence that Fgf20, together with other members of the Fgf9 subfamily, plays a crucial regulatory role in skeletal development and bone homeostasis.


Subject(s)
Fibroblast Growth Factors , Mice, Knockout , Animals , Mice , Fibroblast Growth Factors/metabolism , Fibroblast Growth Factors/genetics , X-Ray Microtomography , Bone and Bones/metabolism , Bone and Bones/pathology , Bone and Bones/diagnostic imaging , Bone and Bones/abnormalities , Calcification, Physiologic , Male , Osteogenesis , Female , Mice, Inbred C57BL , Phenotype
3.
Curr Protoc ; 4(2): e980, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38385868

ABSTRACT

The skeletal system mirrors several processes in the vertebrate body that impact developmental malfunctions, hormonal disbalance, malfunction of calcium metabolism and turn over, and inflammation processes such as arthrosis. X-ray micro computed tomography is a useful tool for 3D in situ evaluation of the skeletal system in a time-related manner, but results depend highly on resolution. Here, we provide the methodological background for a graduated evaluation from whole-body analysis of skeletal morphology and mineralization to high-resolution analysis of femoral and vertebral microstructure. We combine an expert-based evaluation with a machine-learning-based computational approach, including pre-setup analytical task lists. © 2024 Wiley Periodicals LLC. Basic Protocol 1: In vivo microCT scanning and skeletal analysis in mice Basic Protocol 2: Ex vivo high-resolution microCT scanning and microstructural analysis of the femur and L4 vertebra.


Subject(s)
Calcinosis , Animals , Mice , X-Ray Microtomography , Disease Models, Animal , Femur/diagnostic imaging , Lumbar Vertebrae
4.
Hum Mol Genet ; 33(6): 491-500, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-37971355

ABSTRACT

Pathogenic variants in the highly conserved OVOL2 promoter region cause posterior polymorphous corneal dystrophy (PPCD) 1 by inducing an ectopic expression of the endothelial OVOL2 mRNA. Here we produced an allelic series of Ovol2 promoter mutations in the mouse model including the heterozygous c.-307T>C variant (RefSeq NM_021220.4) causing PPCD1 in humans. Despite the high evolutionary conservation of the Ovol2 promoter, only some alterations of its sequence had phenotypic consequences in mice. Four independent sequence variants in the distal part of the Ovol2 promoter had no significant effect on endothelial Ovol2 mRNA level or caused any ocular phenotype. In contrast, the mutation c.-307T>C resulted in increased Ovol2 expression in the corneal endothelium. However, only a small fraction of adult mice c.-307T>C heterozygotes developed ocular phenotypes such as irido-corneal adhesions, and corneal opacity. Interestingly, phenotypic penetrance was increased at embryonic stages. Notably, c.-307T>C mutation is located next to the Ovol1/Ovol2 transcription factor binding site. Mice carrying an allele with a deletion encompassing the Ovol2 binding site c.-307_-320del showed significant Ovol2 gene upregulation in the cornea endothelium and exhibited phenotypes similar to the c.-307T>C mutation. In conclusion, although the mutations c.-307T>C and -307_-320del lead to a comparably strong increase in endothelial Ovol2 expression as seen in PPCD1 patients, endothelial dystrophy was not observed in the mouse model, implicating species-specific differences in endothelial cell biology. Nonetheless, the emergence of dominant ocular phenotypes associated with Ovol2 promoter variants in mice implies a potential role of this gene in eye development and disease.


Subject(s)
Corneal Dystrophies, Hereditary , Adult , Humans , Animals , Mice , Phenotype , Corneal Dystrophies, Hereditary/genetics , Endothelium, Corneal , Disease Models, Animal , RNA, Messenger , Transcription Factors/genetics
5.
Nature ; 624(7992): 653-662, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37993717

ABSTRACT

Ameloblasts are specialized epithelial cells in the jaw that have an indispensable role in tooth enamel formation-amelogenesis1. Amelogenesis depends on multiple ameloblast-derived proteins that function as a scaffold for hydroxyapatite crystals. The loss of function of ameloblast-derived proteins results in a group of rare congenital disorders called amelogenesis imperfecta2. Defects in enamel formation are also found in patients with autoimmune polyglandular syndrome type-1 (APS-1), caused by AIRE deficiency3,4, and in patients diagnosed with coeliac disease5-7. However, the underlying mechanisms remain unclear. Here we show that the vast majority of patients with APS-1 and coeliac disease develop autoantibodies (mostly of the IgA isotype) against ameloblast-specific proteins, the expression of which is induced by AIRE in the thymus. This in turn results in a breakdown of central tolerance, and subsequent generation of corresponding autoantibodies that interfere with enamel formation. However, in coeliac disease, the generation of such autoantibodies seems to be driven by a breakdown of peripheral tolerance to intestinal antigens that are also expressed in enamel tissue. Both conditions are examples of a previously unidentified type of IgA-dependent autoimmune disorder that we collectively name autoimmune amelogenesis imperfecta.


Subject(s)
Amelogenesis Imperfecta , Autoantibodies , Celiac Disease , Polyendocrinopathies, Autoimmune , Humans , Amelogenesis Imperfecta/complications , Amelogenesis Imperfecta/immunology , Autoantibodies/immunology , Celiac Disease/complications , Celiac Disease/immunology , Immunoglobulin A/immunology , Polyendocrinopathies, Autoimmune/complications , Polyendocrinopathies, Autoimmune/immunology , Proteins/immunology , Proteins/metabolism , Ameloblasts/metabolism , Dental Enamel/immunology , Dental Enamel/metabolism , AIRE Protein/deficiency , Antigens/immunology , Antigens/metabolism , Intestines/immunology , Intestines/metabolism
6.
Commun Biol ; 6(1): 1043, 2023 10 14.
Article in English | MEDLINE | ID: mdl-37833362

ABSTRACT

Obesity adversely affects bone and fat metabolism in mice and humans. Omega-3 polyunsaturated fatty acids (omega-3 PUFAs) have been shown to improve glucose metabolism and bone homeostasis in obesity. However, the impact of omega-3 PUFAs on bone marrow adipose tissue (BMAT) and bone marrow stromal cell (BMSC) metabolism has not been intensively studied yet. In the present study we demonstrated that omega-3 PUFA supplementation in high fat diet (HFD + F) improved bone parameters, mechanical properties along with decreased BMAT in obese mice when compared to the HFD group. Primary BMSCs isolated from HFD + F mice showed decreased adipocyte and higher osteoblast differentiation with lower senescent phenotype along with decreased osteoclast formation suggesting improved bone marrow microenvironment promoting bone formation in mice. Thus, our study highlights the beneficial effects of omega-3 PUFA-enriched diet on bone and cellular metabolism and its potential use in the treatment of metabolic bone diseases.


Subject(s)
Bone Marrow , Fatty Acids, Omega-3 , Humans , Mice , Animals , Bone Marrow/metabolism , Adiposity , Bone and Bones/metabolism , Obesity/complications , Obesity/prevention & control , Obesity/metabolism , Fatty Acids, Omega-3/pharmacology , Fatty Acids, Omega-3/metabolism , Disease Models, Animal
7.
Sci Rep ; 13(1): 1471, 2023 01 26.
Article in English | MEDLINE | ID: mdl-36702824

ABSTRACT

Highly specialized enamel matrix proteins (EMPs) are predominantly expressed in odontogenic tissues and diverged from common ancestral gene. They are crucial for the maturation of enamel and its extreme complexity in multiple independent lineages. However, divergence of EMPs occured already before the true enamel evolved and their conservancy in toothless species suggests that non-canonical functions are still under natural selection. To elucidate this hypothesis, we carried out an unbiased, comprehensive phenotyping and employed data from the International Mouse Phenotyping Consortium to show functional pleiotropy of amelogenin, ameloblastin, amelotin, and enamelin, genes, i.e. in sensory function, skeletal morphology, cardiovascular function, metabolism, immune system screen, behavior, reproduction, and respiratory function. Mice in all KO mutant lines, i.e. amelogenin KO, ameloblastin KO, amelotin KO, and enamelin KO, as well as mice from the lineage with monomeric form of ameloblastin were affected in multiple physiological systems. Evolutionary conserved motifs and functional pleiotropy support the hypothesis of role of EMPs as general physiological regulators. These findings illustrate how their non-canonical function can still effect the fitness of modern species by an example of influence of amelogenin and ameloblastin on the bone physiology.


Subject(s)
Dental Enamel Proteins , Animals , Mice , Amelogenin/metabolism , Dental Enamel Proteins/genetics
8.
Mol Metab ; 65: 101598, 2022 11.
Article in English | MEDLINE | ID: mdl-36103974

ABSTRACT

OBJECTIVE: The use of thiazolidinediones (TZDs) as insulin sensitizers has been shown to have side effects including increased accumulation of bone marrow adipocytes (BMAds) associated with a higher fracture risk and bone loss. A novel TZD analog MSDC-0602K with low affinity to PPARγ has been developed to reduce adverse effects of TZD therapy. However, the effect of MSDC-0602K on bone phenotype and bone marrow mesenchymal stem cells (BM-MSCs) in relation to obesity has not been intensively studied yet. METHODS: Here, we investigated whether 8-week treatment with MSDC-0602K has a less detrimental effect on bone loss and BM-MSC properties in obese mice in comparison to first generation of TZDs, pioglitazone. Bone parameters (bone microstructure, bone marrow adiposity, bone strength) were examined by µCT and 3-point bending test. Primary BM-MSCs were isolated and measured for osteoblast and adipocyte differentiation. Cellular senescence, bioenergetic profiling, nutrient consumption and insulin signaling were also determined. RESULTS: The findings demonstrate that MSDC-0602K improved bone parameters along with increased proportion of smaller BMAds in tibia of obese mice when compared to pioglitazone. Further, primary BM-MSCs isolated from treated mice and human BM-MSCs revealed decreased adipocyte and higher osteoblast differentiation accompanied with less inflammatory and senescent phenotype induced by MSDC-0602K vs. pioglitazone. These changes were further reflected by increased glycolytic activity differently affecting glutamine and glucose cellular metabolism in MSDC-0602K-treated cells compared to pioglitazone, associated with higher osteogenesis. CONCLUSION: Our study provides novel insights into the action of MSDC-0602K in obese mice, characterized by the absence of detrimental effects on bone quality and BM-MSC metabolism when compared to classical TZDs and thus suggesting a potential therapeutical use of MSDC-0602K in both metabolic and bone diseases.


Subject(s)
Mesenchymal Stem Cells , Thiazolidinediones , Animals , Bone Marrow Stromal Antigen 2/metabolism , Bone Marrow Stromal Antigen 2/pharmacology , Glucose/metabolism , Glutamine/metabolism , Humans , Hypoglycemic Agents/pharmacology , Insulin/metabolism , Mesenchymal Stem Cells/metabolism , Mice , Mice, Obese , Obesity/drug therapy , Obesity/metabolism , PPAR gamma/metabolism , Pioglitazone/metabolism , Pioglitazone/pharmacology , Spiro Compounds , Thiazolidinediones/pharmacology
9.
Nat Commun ; 13(1): 1866, 2022 04 06.
Article in English | MEDLINE | ID: mdl-35387987

ABSTRACT

Type 2 diabetes mellitus represents a major health problem with increasing prevalence worldwide. Limited efficacy of current therapies has prompted a search for novel therapeutic options. Here we show that treatment of pre-diabetic mice with mitochondrially targeted tamoxifen, a potential anti-cancer agent with senolytic activity, improves glucose tolerance and reduces body weight with most pronounced reduction of visceral adipose tissue due to reduced food intake, suppressed adipogenesis and elimination of senescent cells. Glucose-lowering effect of mitochondrially targeted tamoxifen is linked to improvement of type 2 diabetes mellitus-related hormones profile and is accompanied by reduced lipid accumulation in liver. Lower senescent cell burden in various tissues, as well as its inhibitory effect on pre-adipocyte differentiation, results in lower level of circulating inflammatory mediators that typically enhance metabolic dysfunction. Targeting senescence with mitochodrially targeted tamoxifen thus represents an approach to the treatment of type 2 diabetes mellitus and its related comorbidities, promising a complex impact on senescence-related pathologies in aging population of patients with type 2 diabetes mellitus with potential translation into the clinic.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Aged , Animals , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Glucose/metabolism , Humans , Mice , Obesity/complications , Obesity/drug therapy , Obesity/metabolism , Tamoxifen/pharmacology , Tamoxifen/therapeutic use
10.
BMC Gastroenterol ; 22(1): 186, 2022 Apr 12.
Article in English | MEDLINE | ID: mdl-35413796

ABSTRACT

BACKGROUND: Ubiquitin ligases (Ub-ligases) are essential intracellular enzymes responsible for the regulation of proteome homeostasis, signaling pathway crosstalk, cell differentiation and stress responses. Individual Ub-ligases exhibit their unique functions based on the nature of their substrates. They create a complex regulatory network with alternative and feedback pathways to maintain cell homeostasis, being thus important players in many physiological and pathological conditions. However, the functional classification of Ub-ligases needs to be revised and extended. METHODS: In the current study, we used a novel semantic biclustering technique for expression profiling of Ub-ligases and ubiquitination-related genes in the murine gastrointestinal tract (GIT). We accommodated a general framework of the algorithm for finding tissue-specific gene expression clusters in GIT. In order to test identified clusters in a biological system, we used a model of epithelial regeneration. For this purpose, a dextran sulfate sodium (DSS) mouse model, following with in situ hybridization, was used to expose genes with possible compensatory features. To determine cell-type specific distribution of Ub-ligases and ubiquitination-related genes, principal component analysis (PCA) and Uniform Manifold Approximation and Projection technique (UMAP) were used to analyze the Tabula Muris scRNA-seq data of murine colon followed by comparison with our clustering results. RESULTS: Our established clustering protocol, that incorporates the semantic biclustering algorithm, demonstrated the potential to reveal interesting expression patterns. In this manner, we statistically defined gene clusters consisting of the same genes involved in distinct regulatory pathways vs distinct genes playing roles in functionally similar signaling pathways. This allowed us to uncover the potentially redundant features of GIT-specific Ub-ligases and ubiquitination-related genes. Testing the statistically obtained results on the mouse model showed that genes clustered to the same ontology group simultaneously alter their expression pattern after induced epithelial damage, illustrating their complementary role during tissue regeneration. CONCLUSIONS: An optimized semantic clustering protocol demonstrates the potential to reveal a readable and unique pattern in the expression profiling of GIT-specific Ub-ligases, exposing ontologically relevant gene clusters with potentially redundant features. This extends our knowledge of ontological relationships among Ub-ligases and ubiquitination-related genes, providing an alternative and more functional gene classification. In a similar way, semantic cluster analysis could be used for studding of other enzyme families, tissues and systems.


Subject(s)
Semantics , Ubiquitin-Protein Ligases , Animals , Cluster Analysis , Gastrointestinal Tract/metabolism , Humans , Mice , Ubiquitin/genetics , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/genetics
11.
Curr Protoc ; 2(1): e340, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35007410

ABSTRACT

Enamel is the hardest tissue in mammalian organisms and is the layer covering the tooth. It consists of hydroxyapatite (HAP) crystallites, which mineralize on a protein scaffold known as the enamel matrix. Enamel matrix assembly is a very complex process mediated by enamel matrix proteins (EMPs). Altered HAP deposition or disintegration of the protein scaffold can cause enamel defects. Various methods have been established for enamel phenotyping, including MicroCT scanning with various resolutions from 9 µm for in vivo imaging to 1.5 µm for ex vivo imaging. With increasing resolution, we can see not only the enamel layer itself but also a detailed map of mineralization. To study enamel microstructure, we combine the MicroCT analysis with scanning electron microscopy (SEM), which enables us to perform element analyses such as calcium-carbon ratio. However, the methods mentioned above only show the result-already formed enamel. Stimulated emission depletion (STED) microscopy provides extra information about protein structure in the form of EMP localization and position before enamel mineralization. A combination of all these methods allows analyzing the same sample on multiple levels-starting with the live animal being scanned harmlessly and quickly, followed by sacrifice and high-resolution MicroCT scans requiring no special sample preparation. The biggest advantage is that samples remain in perfect condition for SEM or STED microscopic analysis. © 2022 Wiley Periodicals LLC. Basic Protocol 1: In vivo MicroCT scanning of mouse Basic Protocol 2: Ex vivo HR-MicroCT of the teeth Basic Protocol 3: SEM for teeth microstructure Basic Protocol 4: Stimulated emission depletion (STED) microscopy.


Subject(s)
Tooth Calcification , Tooth , Animals , Durapatite , Mice , Microscopy, Electron, Scanning , X-Ray Microtomography
12.
Front Immunol ; 13: 1035226, 2022.
Article in English | MEDLINE | ID: mdl-36605205

ABSTRACT

Introduction: Autoinflammatory diseases are characterized by dysregulation of innate immune system leading to spontaneous sterile inflammation. One of the well-established animal models of this group of disorders is the mouse strain Pstpip2cmo . In this strain, the loss of adaptor protein PSTPIP2 leads to the autoinflammatory disease chronic multifocal osteomyelitis. It is manifested by sterile inflammation of the bones and surrounding soft tissues of the hind limbs and tail. The disease development is propelled by elevated production of IL-1ß and reactive oxygen species by neutrophil granulocytes. However, the molecular mechanisms linking PSTPIP2 and these pathways have not been established. Candidate proteins potentially involved in these mechanisms include PSTPIP2 binding partners, PEST family phosphatases (PEST-PTPs) and phosphoinositide phosphatase SHIP1. Methods: To address the role of these proteins in PSTPIP2-mediated control of inflammation, we have generated mouse strains in which PEST-PTP or SHIP1 binding sites in PSTPIP2 have been disrupted. In these mouse strains, we followed disease symptoms and various inflammation markers. Results: Our data show that mutation of the PEST-PTP binding site causes symptomatic disease, whereas mice lacking the SHIP1 interaction site remain asymptomatic. Importantly, both binding partners of PSTPIP2 contribute equally to the control of IL-1ß production, while PEST-PTPs have a dominant role in the regulation of reactive oxygen species. In addition, the interaction of PEST-PTPs with PSTPIP2 regulates the production of the chemokine CXCL2 by neutrophils. Its secretion likely creates a positive feedback loop that drives neutrophil recruitment to the affected tissues. Conclusions: We demonstrate that PSTPIP2-bound PEST-PTPs and SHIP1 together control the IL-1ß pathway. In addition, PEST-PTPs have unique roles in the control of reactive oxygen species and chemokine production, which in the absence of PEST-PTP binding to PSTPIP2 shift the balance towards symptomatic disease.


Subject(s)
Adaptor Proteins, Signal Transducing , Cytoskeletal Proteins , Neutrophils , Animals , Mice , Adaptor Proteins, Signal Transducing/metabolism , Cytoskeletal Proteins/metabolism , Inflammation , Reactive Oxygen Species/metabolism
13.
J Biol Chem ; 297(4): 101131, 2021 10.
Article in English | MEDLINE | ID: mdl-34461100

ABSTRACT

A number of human autoinflammatory diseases manifest with severe inflammatory bone destruction. Mouse models of these diseases represent valuable tools that help us to understand molecular mechanisms triggering this bone autoinflammation. The Pstpip2cmo mouse strain is among the best characterized of these; it harbors a mutation resulting in the loss of adaptor protein PSTPIP2 and development of autoinflammatory osteomyelitis. In Pstpip2cmo mice, overproduction of interleukin-1ß (IL-1ß) and reactive oxygen species by neutrophil granulocytes leads to spontaneous inflammation of the bones and surrounding soft tissues. However, the upstream signaling events leading to this overproduction are poorly characterized. Here, we show that Pstpip2cmo mice deficient in major regulator of Src-family kinases (SFKs) receptor-type protein tyrosine phosphatase CD45 display delayed onset and lower severity of the disease, while the development of autoinflammation is not affected by deficiencies in Toll-like receptor signaling. Our data also show deregulation of pro-IL-1ß production by Pstpip2cmo neutrophils that are attenuated by CD45 deficiency. These data suggest a role for SFKs in autoinflammation. Together with previously published work on the involvement of protein tyrosine kinase spleen tyrosine kinase, they point to the role of receptors containing immunoreceptor tyrosine-based activation motifs, which after phosphorylation by SFKs recruit spleen tyrosine kinase for further signal propagation. We propose that this class of receptors triggers the events resulting in increased pro-IL-1ß synthesis and disease initiation and/or progression.


Subject(s)
Diabetes Mellitus, Type 1/immunology , Interleukin-1beta/immunology , Leukocyte Common Antigens/immunology , Neutrophils/immunology , Osteomyelitis/immunology , Signal Transduction/immunology , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/immunology , Animals , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/immunology , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/pathology , Interleukin-1beta/genetics , Leukocyte Common Antigens/genetics , Mice , Mice, Knockout , Neutrophils/pathology , Osteomyelitis/genetics , Osteomyelitis/pathology , Severity of Illness Index , Signal Transduction/genetics , Toll-Like Receptors/genetics , Toll-Like Receptors/immunology
14.
Front Immunol ; 12: 618332, 2021.
Article in English | MEDLINE | ID: mdl-33986741

ABSTRACT

LST1 is a small adaptor protein expressed in leukocytes of myeloid lineage. Due to the binding to protein tyrosine phosphatases SHP1 and SHP2 it was thought to have negative regulatory function in leukocyte signaling. It was also shown to be involved in cytoskeleton regulation and generation of tunneling nanotubes. LST1 gene is located in MHCIII locus close to many immunologically relevant genes. In addition, its expression increases under inflammatory conditions such as viral infection, rheumatoid arthritis and inflammatory bowel disease and its deficiency was shown to result in slightly increased sensitivity to influenza infection in mice. However, little else is known about its role in the immune system homeostasis and immune response. Here we show that similar to humans, LST1 is expressed in mice in the cells of the myeloid lineage. In vivo, its deficiency results in alterations in multiple leukocyte subset abundance in steady state and under inflammatory conditions. Moreover, LST1-deficient mice show significant level of resistance to dextran sodium sulphate (DSS) induced acute colitis, a model of inflammatory bowel disease. These data demonstrate that LST1 regulates leukocyte abundance in lymphoid organs and inflammatory response in the gut.


Subject(s)
Gene Expression Regulation , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Signal Transduction , Animals , Biomarkers , Colitis/etiology , Colitis/metabolism , Colitis/pathology , Dendritic Cells/immunology , Dendritic Cells/metabolism , Disease Models, Animal , Disease Susceptibility , Genotype , Humans , Leukocytes/immunology , Leukocytes/metabolism , Lipopolysaccharides/immunology , Macrophages/immunology , Macrophages/metabolism , Mice , Mice, Knockout , Phosphorylation
15.
Cell Rep ; 35(3): 109015, 2021 04 20.
Article in English | MEDLINE | ID: mdl-33882302

ABSTRACT

Osteoblasts orchestrate bone formation through the secretion of type I collagen and other constituents of the matrix on which hydroxyapatite crystals mineralize. Here, we show that TENT5A, whose mutations were found in congenital bone disease osteogenesis imperfecta patients, is a cytoplasmic poly(A) polymerase playing a crucial role in regulating bone mineralization. Direct RNA sequencing revealed that TENT5A is induced during osteoblast differentiation and polyadenylates mRNAs encoding Col1α1, Col1α2, and other secreted proteins involved in osteogenesis, increasing their expression. We postulate that TENT5A, possibly together with its paralog TENT5C, is responsible for the wave of cytoplasmic polyadenylation of mRNAs encoding secreted proteins occurring during bone mineralization. Importantly, the Tent5a knockout (KO) mouse line displays bone fragility and skeletal hypomineralization phenotype resulting from quantitative and qualitative collagen defects. Thus, we report a biologically relevant posttranscriptional regulator of collagen production and, more generally, bone formation.


Subject(s)
Calcification, Physiologic/genetics , Osteoblasts/metabolism , Osteogenesis Imperfecta/genetics , Osteogenesis/genetics , Polynucleotide Adenylyltransferase/genetics , RNA, Messenger/genetics , Animals , Cell Differentiation , Collagen Type I/genetics , Collagen Type I/metabolism , Collagen Type I, alpha 1 Chain/genetics , Collagen Type I, alpha 1 Chain/metabolism , Disease Models, Animal , Eye Proteins/genetics , Eye Proteins/metabolism , Female , Gene Expression Regulation, Developmental , Humans , Male , Mice , Mice, Knockout , Nerve Growth Factors/genetics , Nerve Growth Factors/metabolism , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism , Osteoblasts/pathology , Osteogenesis Imperfecta/metabolism , Osteogenesis Imperfecta/pathology , Osteonectin/genetics , Osteonectin/metabolism , Polyadenylation , Polynucleotide Adenylyltransferase/metabolism , Protein Isoforms/deficiency , Protein Isoforms/genetics , RNA, Messenger/metabolism , Sequence Analysis, RNA , Serpins/genetics , Serpins/metabolism , Signal Transduction
16.
PLoS Genet ; 16(12): e1009190, 2020 12.
Article in English | MEDLINE | ID: mdl-33370286

ABSTRACT

The genetic landscape of diseases associated with changes in bone mineral density (BMD), such as osteoporosis, is only partially understood. Here, we explored data from 3,823 mutant mouse strains for BMD, a measure that is frequently altered in a range of bone pathologies, including osteoporosis. A total of 200 genes were found to significantly affect BMD. This pool of BMD genes comprised 141 genes with previously unknown functions in bone biology and was complementary to pools derived from recent human studies. Nineteen of the 141 genes also caused skeletal abnormalities. Examination of the BMD genes in osteoclasts and osteoblasts underscored BMD pathways, including vesicle transport, in these cells and together with in silico bone turnover studies resulted in the prioritization of candidate genes for further investigation. Overall, the results add novel pathophysiological and molecular insight into bone health and disease.


Subject(s)
Bone Density/genetics , Gene Expression Regulation/genetics , Osteoblasts/metabolism , Osteoclasts/metabolism , Osteoporosis/genetics , Animals , Female , Gene Ontology , Genetic Pleiotropy , Genome-Wide Association Study , Genotype , Male , Mice , Mice, Transgenic , Mutation , Osteoblasts/pathology , Osteoclasts/pathology , Osteoporosis/metabolism , Phenotype , Promoter Regions, Genetic , Protein Interaction Maps , Sex Characteristics , Transcriptome
17.
J Immunol ; 204(6): 1607-1620, 2020 03 15.
Article in English | MEDLINE | ID: mdl-32024700

ABSTRACT

Autoinflammatory diseases are characterized by dysregulation of the innate immune system, leading to spontaneous inflammation. Pstpip2cmo mouse strain is a well-characterized model of this class of disorders. Because of the mutation leading to the lack of adaptor protein PSTPIP2, these animals suffer from autoinflammatory chronic multifocal osteomyelitis similar to several human syndromes. Current evidence suggests that it is driven by hyperproduction of IL-1ß by neutrophil granulocytes. In this study, we show that in addition to IL-1ß, PSTPIP2 also negatively regulates pathways governing reactive oxygen species generation by neutrophil NOX2 NADPH oxidase. Pstpip2cmo neutrophils display highly elevated superoxide production in response to a range of stimuli. Inactivation of NOX2 NADPH oxidase in Pstpip2cmo mice did not affect IL-1ß levels, and the autoinflammatory process was initiated with similar kinetics. However, the bone destruction was almost completely alleviated, suggesting that dysregulated NADPH oxidase activity is a key factor promoting autoinflammatory bone damage in Pstpip2cmo mice.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Bone and Bones/pathology , Cytoskeletal Proteins/metabolism , NADPH Oxidase 2/metabolism , Osteomyelitis/immunology , Adaptor Proteins, Signal Transducing/genetics , Animals , Bone and Bones/immunology , Cell Line , Cytoskeletal Proteins/genetics , Disease Models, Animal , Humans , Interleukin-1beta/immunology , Interleukin-1beta/metabolism , Mice , Mice, Transgenic , Mutation , NADPH Oxidase 2/genetics , Neutrophils/immunology , Neutrophils/metabolism , Osteomyelitis/genetics , Osteomyelitis/pathology , Primary Cell Culture , Signal Transduction/genetics , Signal Transduction/immunology , Superoxides/immunology , Superoxides/metabolism
18.
R Soc Open Sci ; 5(2): 171914, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29515893

ABSTRACT

The Tasmanian tiger or thylacine (Thylacinus cynocephalus) was an iconic Australian marsupial predator that was hunted to extinction in the early 1900s. Despite sharing striking similarities with canids, they failed to evolve many of the specialized anatomical features that characterize carnivorous placental mammals. These evolutionary limitations are thought to arise from functional constraints associated with the marsupial mode of reproduction, in which otherwise highly altricial young use their well-developed forelimbs to climb to the pouch and mouth to suckle. Here we present the first three-dimensional digital developmental series of the thylacine throughout its pouch life using X-ray computed tomography on all known ethanol-preserved specimens. Based on detailed skeletal measurements, we refine the species growth curve to improve age estimates for the individuals. Comparison of allometric growth trends in the appendicular skeleton (fore- and hindlimbs) with that of other placental and marsupial mammals revealed that despite their unique adult morphologies, thylacines retained a generalized early marsupial ontogeny. Our approach also revealed mislabelled specimens that possessed large epipubic bones (vestigial in thylacine) and differing vertebral numbers. All of our generated CT models are publicly available, preserving their developmental morphology and providing a novel digital resource for future studies of this unique marsupial.

19.
Development ; 144(12): 2212-2221, 2017 06 15.
Article in English | MEDLINE | ID: mdl-28506989

ABSTRACT

The patterning of repeated structures is a major theme in developmental biology, and the inter-relationship between spacing and size of such structures is an unresolved issue. Fungiform papillae are repeated epithelial structures that house taste buds on the anterior tongue. Here, we report that FGF signaling is a crucial regulator of fungiform papillae development. We found that mesenchymal FGF10 controls the size of the papillary area, while overall patterning remains unchanged. Our results show that FGF signaling negatively affects the extent of canonical Wnt signaling, which is the main activation pathway during fungiform papillae development; however, this effect does not occur at the level of gene transcription. Rather, our experimental data, together with computational modeling, indicate that FGF10 modulates the range of Wnt effects, likely via induction of Sostdc1 expression. We suggest that modification of the reach of Wnt signaling could be due to local changes in morphogen diffusion, representing a novel mechanism in this tissue context, and we propose that this phenomenon might be involved in a broader array of mammalian developmental processes.


Subject(s)
Fibroblast Growth Factor 10/metabolism , Taste Buds/embryology , Taste Buds/metabolism , Wnt Signaling Pathway , Adaptor Proteins, Signal Transducing , Animals , Body Patterning/genetics , Body Patterning/physiology , Bone Morphogenetic Proteins/genetics , Bone Morphogenetic Proteins/metabolism , Computer Simulation , Female , Fibroblast Growth Factor 10/deficiency , Fibroblast Growth Factor 10/genetics , Hedgehog Proteins/genetics , Hedgehog Proteins/metabolism , Intracellular Signaling Peptides and Proteins/deficiency , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Male , Membrane Proteins/deficiency , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Mice, Knockout , Mice, Transgenic , Models, Biological , Pregnancy , Protein Serine-Threonine Kinases
20.
Proc Natl Acad Sci U S A ; 114(9): E1641-E1650, 2017 02 28.
Article in English | MEDLINE | ID: mdl-28196895

ABSTRACT

The formation of mineralized tissues is governed by extracellular matrix proteins that assemble into a 3D organic matrix directing the deposition of hydroxyapatite. Although the formation of bones and dentin depends on the self-assembly of type I collagen via the Gly-X-Y motif, the molecular mechanism by which enamel matrix proteins (EMPs) assemble into the organic matrix remains poorly understood. Here we identified a Y/F-x-x-Y/L/F-x-Y/F motif, evolutionarily conserved from the first tetrapods to man, that is crucial for higher order structure self-assembly of the key intrinsically disordered EMPs, ameloblastin and amelogenin. Using targeted mutations in mice and high-resolution imaging, we show that impairment of ameloblastin self-assembly causes disorganization of the enamel organic matrix and yields enamel with disordered hydroxyapatite crystallites. These findings define a paradigm for the molecular mechanism by which the EMPs self-assemble into supramolecular structures and demonstrate that this process is crucial for organization of the organic matrix and formation of properly structured enamel.


Subject(s)
Amino Acid Motifs/physiology , Dental Enamel/metabolism , Intrinsically Disordered Proteins/metabolism , Amelogenin/metabolism , Amino Acid Sequence , Animals , Biological Evolution , Dental Enamel Proteins/metabolism , Durapatite/metabolism , Extracellular Matrix Proteins/metabolism , Male , Mice , Protein Binding/physiology
SELECTION OF CITATIONS
SEARCH DETAIL