Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Nat Commun ; 14(1): 7753, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38012128

ABSTRACT

Chemical inducer of dimerization (CID) modules can be used effectively as molecular switches to control biological processes, and thus there is significant interest within the synthetic biology community in identifying novel CID systems. To date, CID modules have been used primarily in engineering cells for in vitro applications. To broaden their utility to the clinical setting, including the potential to control cell and gene therapies, the identification of novel CID modules should consider factors such as the safety and pharmacokinetic profile of the small molecule inducer, and the orthogonality and immunogenicity of the protein components. Here we describe a CID module based on the orally available, approved, small molecule simeprevir and its target, the NS3/4A protease from hepatitis C virus. We demonstrate the utility of this CID module as a molecular switch to control biological processes such as gene expression and apoptosis in vitro, and show that the CID system can be used to rapidly induce apoptosis in tumor cells in a xenograft mouse model, leading to complete tumor regression.


Subject(s)
Hepatitis C , Simeprevir , Humans , Mice , Animals , Simeprevir/pharmacology , Simeprevir/therapeutic use , Hepatitis C/drug therapy , Hepacivirus/metabolism , Genetic Therapy , Apoptosis , Antiviral Agents/pharmacology , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism
2.
Contact (Thousand Oaks) ; 4: 251525642110523, 2021 Jan.
Article in English | MEDLINE | ID: mdl-37143956

ABSTRACT

Saposins are lipid transfer proteins required for the degradation of sphingolipids in the lysosome. These small proteins bind lipids by transitioning from a closed, monomeric state to an open conformation exposing a hydrophobic surface that binds and shields hydrophobic lipid tails from the aqueous environment. Saposins form a range of multimeric assemblies to encompass these bound lipids and present them to hydrolases in the lysosome. This lipid-binding property of human saposin A has been exploited to form lipoprotein nanodiscs suitable for structural studies of membrane proteins. Here we present the crystal structure of a unique tetrameric assembly of murine saposin A produced serendipitously, following modifications of published protocols for making lipoprotein nanodiscs. The structure of this new saposin oligomer highlights the diversity of tertiary arrangement that can be adopted by these important lipid transfer proteins.

3.
Nat Commun ; 9(1): 151, 2018 01 11.
Article in English | MEDLINE | ID: mdl-29323104

ABSTRACT

Sphingolipids are essential components of cellular membranes and defects in their synthesis or degradation cause severe human diseases. The efficient degradation of sphingolipids in the lysosome requires lipid-binding saposin proteins and hydrolytic enzymes. The glycosphingolipid galactocerebroside is the primary lipid component of the myelin sheath and is degraded by the hydrolase ß-galactocerebrosidase (GALC). This enzyme requires the saposin SapA for lipid processing and defects in either of these proteins causes a severe neurodegenerative disorder, Krabbe disease. Here we present the structure of a glycosphingolipid-processing complex, revealing how SapA and GALC form a heterotetramer with an open channel connecting the enzyme active site to the SapA hydrophobic cavity. This structure defines how a soluble hydrolase can cleave the polar glycosyl headgroups of these essential lipids from their hydrophobic ceramide tails. Furthermore, the molecular details of this interaction provide an illustration for how specificity of saposin binding to hydrolases is encoded.


Subject(s)
Galactosylceramidase/metabolism , Glycosphingolipids/metabolism , Saposins/metabolism , Cell Line , Ceramides/metabolism , HEK293 Cells , Humans , Hydrophobic and Hydrophilic Interactions , Protein Binding/genetics , Protein Structure, Tertiary , Saposins/genetics
4.
J Neurosci Res ; 94(11): 1203-19, 2016 11.
Article in English | MEDLINE | ID: mdl-27638604

ABSTRACT

Missense mutations in the lysosomal hydrolase ß-galactocerebrosidase (GALC) account for at least 40% of known cases of Krabbe disease (KD). Most of these missense mutations are predicted to disrupt the fold of the enzyme, preventing GALC in sufficient amounts from reaching its site of action in the lysosome. The predominant central nervous system (CNS) pathology and the absence of accumulated primary substrate within the lysosome mean that strategies used to treat other lysosomal storage disorders (LSDs) are insufficient in KD, highlighting the still unmet clinical requirement for successful KD therapeutics. Pharmacological chaperone therapy (PCT) is one strategy being explored to overcome defects in GALC caused by missense mutations. In recent studies, several small-molecule inhibitors have been identified as promising chaperone candidates for GALC. This Review discusses new insights gained from these studies and highlights the importance of characterizing both the chaperone interaction and the underlying mutation to define properly a responsive population and to improve the translation of existing lead molecules into successful KD therapeutics. We also highlight the importance of using multiple complementary methods to monitor PCT effectiveness. Finally, we explore the exciting potential of using combination therapy to ameliorate disease through the use of PCT with existing therapies or with more generalized therapeutics, such as proteasomal inhibition, that have been shown to have synergistic effects in other LSDs. This, alongside advances in CNS delivery of recombinant enzyme and targeted rational drug design, provides a promising outlook for the development of KD therapeutics. © 2016 The Authors. Journal of Neuroscience Research Published by Wiley Periodicals, Inc.


Subject(s)
Leukodystrophy, Globoid Cell/drug therapy , Molecular Chaperones/therapeutic use , Animals , Enzyme Replacement Therapy , Galactosylceramidase/genetics , Galactosylceramidase/metabolism , Humans , Leukodystrophy, Globoid Cell/genetics , Molecular Chaperones/chemistry
5.
Traffic ; 17(8): 908-22, 2016 08.
Article in English | MEDLINE | ID: mdl-27126738

ABSTRACT

Krabbe disease is a severe, fatal neurodegenerative disorder caused by defects in the lysosomal enzyme galactocerebrosidase (GALC). The correct targeting of GALC to the lysosome is essential for the degradation of glycosphingolipids including the primary lipid component of myelin. Over 100 different mutations have been identified in GALC that cause Krabbe disease but the mechanisms by which they cause disease remain unclear. We have generated monoclonal antibodies against full-length human GALC and used these to monitor the trafficking and processing of GALC variants in cell-based assays and by immunofluorescence microscopy. Striking differences in the secretion, processing and endosomal targeting of GALC variants allows the classification of these into distinct categories. A subset of GALC variants are not secreted by cells, not proteolytically processed, and remain trapped in the ER; these are likely to cause disease due to protein misfolding and should be targeted for pharmacological chaperone therapies. Other GALC variants can be correctly secreted by cells and cause disease due to catalytic defects in the enzyme active site, inappropriate post-translational modification or a potential inability to bind essential cofactors. The classification of disease pathogenesis presented here provides a molecular framework for appropriate targeting of future Krabbe disease therapies.


Subject(s)
Galactosylceramidase/metabolism , Leukodystrophy, Globoid Cell/genetics , Leukodystrophy, Globoid Cell/metabolism , Lysosomes/metabolism , Mutation/genetics , Cell Line , Galactosylceramidase/chemistry , Galactosylceramidase/genetics , Humans , Lysosomes/genetics , Protein Processing, Post-Translational
6.
Chem Sci ; 6(5): 3075-3086, 2015 May 20.
Article in English | MEDLINE | ID: mdl-26029356

ABSTRACT

Krabbe disease is a devastating neurodegenerative disorder characterized by rapid demyelination of nerve fibers. This disease is caused by defects in the lysosomal enzyme ß-galactocerebrosidase (GALC), which hydrolyzes the terminal galactose from glycosphingolipids. These lipids are essential components of eukaryotic cell membranes: substrates of GALC include galactocerebroside, the primary lipid component of myelin, and psychosine, a cytotoxic metabolite. Mutations of GALC that cause misfolding of the protein may be responsive to pharmacological chaperone therapy (PCT), whereby small molecules are used to stabilize these mutant proteins, thus correcting trafficking defects and increasing residual catabolic activity in cells. Here we describe a new approach for the synthesis of galacto-configured azasugars and the characterization of their interaction with GALC using biophysical, biochemical and crystallographic methods. We identify that the global stabilization of GALC conferred by azasugar derivatives, measured by fluorescence-based thermal shift assays, is directly related to their binding affinity, measured by enzyme inhibition. X-ray crystal structures of these molecules bound in the GALC active site reveal which residues participate in stabilizing interactions, show how potency is achieved and illustrate the penalties of aza/iminosugar ring distortion. The structure-activity relationships described here identify the key physical properties required of pharmacological chaperones for Krabbe disease and highlight the potential of azasugars as stabilizing agents for future enzyme replacement therapies. This work lays the foundation for new drug-based treatments of Krabbe disease.

7.
PLoS One ; 9(5): e98090, 2014.
Article in English | MEDLINE | ID: mdl-24840177

ABSTRACT

BACKGROUND: Protein kinase D (PKD) enzymes regulate cofilin-driven actin reorganization and directed cell migration through both p21-activated kinase 4 (PAK4) and the phosphatase slingshot 1L (SSH1L). The relative contributions of different endogenous PKD isoforms to both signaling pathways have not been elucidated, sufficiently. METHODOLOGY/PRINCIPAL FINDINGS: We here analyzed two cell lines (HeLa and MDA-MB-468) that express the subtypes protein kinase D2 (PKD2) and protein kinase D3 (PKD3). We show that under normal growth conditions both isoforms can form a complex, in which PKD3 is basally-active and PKD2 is inactive. Basal activity of PKD3 mediates PAK4 activity and downstream signaling, but does not significantly inhibit SSH1L. This signaling constellation was required for facilitating directed cell migration. Activation of PKD2 and further increase of PKD3 activity leads to additional phosphorylation and inhibition of endogenous SSH1L. Net effect is a dramatic increase in phospho-cofilin and a decrease in cell migration, since now both PAK4 and SSH1L are regulated by the active PKD2/PKD3 complex. CONCLUSIONS/SIGNIFICANCE: Our data suggest that PKD complexes provide an interface for both cofilin regulatory pathways. Dependent on the activity of involved PKD enzymes signaling can be balanced to guarantee a functional cofilin activity cycle and increase cell migration, or imbalanced to decrease cell migration. Our data also provide an explanation of how PKD isoforms mediate different effects on directed cell migration.


Subject(s)
Actin Depolymerizing Factors/metabolism , Cell Movement/physiology , Multiprotein Complexes/metabolism , Protein Isoforms/metabolism , Protein Kinase C/genetics , Signal Transduction/physiology , Cell Movement/genetics , HeLa Cells , Humans , Immunoblotting , Immunoprecipitation , Multiprotein Complexes/genetics , Oligonucleotides/genetics , Phosphoprotein Phosphatases/metabolism , Phosphorylation , Protein Isoforms/genetics , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/genetics , p21-Activated Kinases/metabolism
8.
Biochem J ; 455(2): 251-60, 2013 Oct 15.
Article in English | MEDLINE | ID: mdl-23841590

ABSTRACT

PAKs (p21-activated kinases) are effectors of RhoGTPases. PAK4 contributes to regulation of cofilin at the leading edge of migrating cells through activation of LIMK (Lin-11/Isl-1/Mec-3 kinase). PAK4 activity is regulated by an autoinhibitory domain that is released upon RhoGTPase binding as well as phosphorylation at Ser474 in the activation loop of the kinase domain. In the present study, we add another level of complexity to PAK4 regulation by showing that phosphorylation at Ser99 is required for its targeting to the leading edge. This phosphorylation is mediated by PKD1 (protein kinase D1). Phosphorylation of PAK4 at Ser99 also mediates binding to 14-3-3 protein, and is required for the formation of a PAK4-LIMK-PKD1 complex that regulates cofilin activity and directed cell migration.


Subject(s)
Protein Kinase C/metabolism , Serine/genetics , p21-Activated Kinases/analysis , p21-Activated Kinases/metabolism , 14-3-3 Proteins/metabolism , Cell Movement , HEK293 Cells , HeLa Cells , Humans , Phosphorylation , Serine/metabolism , Signal Transduction , Transfection
9.
J Biol Chem ; 286(39): 34254-61, 2011 Sep 30.
Article in English | MEDLINE | ID: mdl-21832093

ABSTRACT

Dynamic reorganization of the actin cytoskeleton at the leading edge is required for directed cell migration. Cofilin, a small actin-binding protein with F-actin severing activities, is a key enzyme initiating such actin remodeling processes. Cofilin activity is tightly regulated by phosphorylation and dephosphorylation events that are mediated by LIM kinase (LIMK) and the phosphatase slingshot (SSH), respectively. Protein kinase D (PKD) is a serine/threonine kinase that inhibits actin-driven directed cell migration by phosphorylation and inactivation of SSH. Here, we show that PKD can also regulate LIMK through direct phosphorylation and activation of its upstream kinase p21-activated kinase 4 (PAK4). Therefore, active PKD increases the net amount of phosphorylated inactive cofilin in cells through both pathways. The regulation of cofilin activity at multiple levels may explain the inhibitory effects of PKD on barbed end formation as well as on directed cell migration.


Subject(s)
Actin Depolymerizing Factors/metabolism , Actins/metabolism , Cell Movement/physiology , Protein Kinase C/metabolism , p21-Activated Kinases/metabolism , Actin Depolymerizing Factors/genetics , Actins/genetics , HeLa Cells , Humans , Lim Kinases/genetics , Lim Kinases/metabolism , Phosphoprotein Phosphatases/genetics , Phosphoprotein Phosphatases/metabolism , Protein Kinase C/genetics , p21-Activated Kinases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...