Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Front Med Technol ; 5: 1183179, 2023.
Article in English | MEDLINE | ID: mdl-37727273

ABSTRACT

Underfunded healthcare infrastructures in low-resource settings in sub-Saharan Africa have resulted in a lack of medical devices crucial to provide healthcare for all. A representative example of this scenario is medical devices to administer paracervical blocks during gynaecological procedures. Devices needed for this procedure are usually unavailable or expensive. Without these devices, providing paracervical blocks for women in need is impossible resulting in compromising the quality of care for women requiring gynaecological procedures such as loop electrosurgical excision, treatment of miscarriage, or incomplete abortion. In that perspective, interventions that can be integrated into the healthcare system in low-resource settings to provide women needing paracervical blocks remain urgent. Based on a context-specific approach while leveraging circular economy design principles, this research catalogues the development of a new medical device called Chloe SED® that can be used to support the provision of paracervical blocks. Chloe SED®, priced at US$ 1.5 per device when produced in polypropylene, US$ 10 in polyetheretherketone, and US$ 15 in aluminium, is attached to any 10-cc syringe in low-resource settings to provide paracervical blocks. The device is designed for durability, repairability, maintainability, upgradeability, and recyclability to address environmental sustainability issues in the healthcare domain. Achieving the design of Chloe SED® from a context-specific and circular economy approach revealed correlations between the material choice to manufacture the device, the device's initial cost, product durability and reuse cycle, reprocessing method and cost, and environmental impact. These correlations can be seen as interconnected conflicting or divergent trade-offs that need to be continually assessed to deliver a medical device that provides healthcare for all with limited environmental impact. The study findings are intended to be seen as efforts to make available medical devices to support women's access to reproductive health services.

2.
Environ Sci Technol ; 57(1): 44-52, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36574507

ABSTRACT

The European Union (EU) has set a 37.5% GHG reduction target in 2030 for the mobility sector, relative to 1990 levels. This requires increasing the share of zero-emission passenger vehicles, mainly in the form of electric vehicles (EVs). This study calculates future GHG emissions related to passenger vehicle manufacturing and use based on stated policy goals of EU Member States for EV promotion. Under these policies, by 2040 the stock of EVs would be about 73 times larger than those of 2020, contributing to a cumulative in-use emission reduction of 2.0 gigatons CO2-eq. Nevertheless, this stated EV adoption will not be sufficiently fast to reach the EU's GHG reduction targets, and some of the GHG environmental burdens may be shifted to the EV battery manufacturing countries. To achieve the 2030 reduction targets, the EU as a whole needs to accelerate the phase-out of internal combustion engine vehicles and transit to e-mobility at the pace of the most ambitious Member States, such that EVs can comprise at least 55% of the EU passenger vehicle fleet in 2030. An accelerated decarbonization of the electricity system will become the most critical prerequisite for minimizing GHG emissions from both EV manufacturing and in-use stages.


Subject(s)
Greenhouse Gases , Greenhouse Effect , European Union , Vehicle Emissions/analysis , Electricity , Motor Vehicles
3.
Environ Sci Technol ; 56(12): 8561-8570, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35549248

ABSTRACT

To achieve climate neutrality, future urban heating systems will need to use a variety of low-carbon heating technologies. The transition toward low-carbon heating technologies necessitates a complete restructuring of the heating system, with significant associated material requirements. However, little research has been done into the quantity and environmental impact of the required materials for this system change. We analyzed the material demand and the environmental impact of the transition toward low-carbon heating in the Netherlands across three scenarios based on the local availability and capacity for sources of low-carbon heat. A wide range of materials are included, covering aggregates, construction materials, metals, plastics, and critical materials. We find that while the Dutch policy goal of reducing GHG emissions by 90% before 2050 can be achieved if only direct emissions from the heating system are considered, this is no longer the case when the cradle-to-gate emissions from the additional materials, especially insulation materials, are taken into account. The implementation of these technologies will require 59-63 megatons of materials in the period of 2021-2050, leading to a maximum reduction of 62%.


Subject(s)
Carbon , Heating , Carbon Dioxide , Construction Materials , Environment
4.
Sci Total Environ ; 803: 149892, 2022 Jan 10.
Article in English | MEDLINE | ID: mdl-34500281

ABSTRACT

The construction sector is the biggest driver of resource consumption and waste generation in Europe. The European Union (EU) is making efforts to move from its traditional linear resource and waste management system in the construction sector to a level of high circularity. Based on the theory of circular economy, a new paradigm called waste hierarchy was introduced in the EU Waste Framework Directive. This work uses the framework of the waste hierarchy to analyze the practice of construction and demolition waste (CDW) management in Europe. We explore the evolution of the waste hierarchy in Europe and how it compares with the circular economy. Then, based on the framework, we analyze the performance of CDW management in each EU member state. Innovative treatment methods of CDW, focusing on waste concrete, is investigated. This brings insight into optimizing and upgrading the CDW management in light of advanced technologies and steering the pathway for transitioning the EU towards a circular society.


Subject(s)
Construction Industry , Waste Management , Construction Materials , Europe , Industrial Waste/analysis , Recycling
5.
Environ Sci Technol ; 51(7): 3860-3870, 2017 04 04.
Article in English | MEDLINE | ID: mdl-28257181

ABSTRACT

We introduce several new resilience metrics for quantifying the resilience of critical material supply chains to disruptions and validate these metrics using the 2010 rare earth element (REE) crisis as a case study. Our method is a novel application of Event Sequence Analysis, supplemented with interviews of actors across the entire supply chain. We discuss resilience mechanisms in quantitative terms-time lags, response speeds, and maximum magnitudes-and in light of cultural differences between Japanese and European corporate practice. This quantification is crucial if resilience is ever to be taken into account in criticality assessments and a step toward determining supply and demand elasticities in the REE supply chain. We find that the REE system showed resilience mainly through substitution and increased non-Chinese primary production, with a distinct role for stockpiling. Overall, annual substitution rates reached 10% of total demand. Non-Chinese primary production ramped up at a speed of 4% of total market volume per year. The compound effect of these mechanisms was that recovery from the 2010 disruption took two years. The supply disruption did not nudge a system toward an appreciable degree of recycling. This finding has important implications for the circular economy concept, indicating that quite a long period of sustained material constraints will be necessary for a production-consumption system to naturally evolve toward a circular configuration.


Subject(s)
Metals, Rare Earth , Recycling , Humans
6.
Environ Sci Technol ; 51(2): 1024-1034, 2017 01 17.
Article in English | MEDLINE | ID: mdl-27935700

ABSTRACT

Most carbon capture and storage (CCS) envisions capturing CO2 from flue gas. Direct air capture (DAC) of CO2 has hitherto been deemed unviable because of the higher energy associated with capture at low atmospheric concentrations. We present a Life Cycle Assessment of coal-fired electricity generation that compares monoethanolamine (MEA)-based postcombustion capture (PCC) of CO2 with distributed, humidity-swing-based direct air capture (HS-DAC). Given suitable temperature, humidity, wind, and water availability, HS-DAC can be largely passive. Comparing energy requirements of HS-DAC and MEA-PCC, we find that the parasitic load of HS-DAC is less than twice that of MEA-PCC (60-72 kJ/mol versus 33-46 kJ/mol, respectively). We also compare other environmental impacts as a function of net greenhouse gas (GHG) mitigation: To achieve the same 73% mitigation as MEA-PCC, HS-DAC would increase nine other environmental impacts by on average 38%, whereas MEA-PCC would increase them by 31%. Powering distributed HS-DAC with photovoltaics (instead of coal) while including recapture of all background GHG, reduces this increase to 18%, hypothetically enabling coal-based electricity with net-zero life-cycle GHG. We conclude that, in suitable geographies, HS-DAC can complement MEA-PCC to enable CO2 capture independent of time and location of emissions and recapture background GHG from fossil-based electricity beyond flue stack emissions.


Subject(s)
Coal , Ethanolamine , Electricity , Humidity , Power Plants
7.
Environ Sci Technol ; 49(11): 6740-50, 2015 Jun 02.
Article in English | MEDLINE | ID: mdl-25965803

ABSTRACT

In 2010, Chinese export restrictions caused the price of the rare earth element neodymium to increase by a factor of 10, only to return to almost normal levels in the following months. This despite the fact that the restrictions were not lifted. The significant price peak shows that this material supply chain was only weakly resistant to a major supply disruption. However, the fact that prices rapidly returned to lower levels implies a certain resilience. With the help of a novel approach, based on resilience theory combined with a material flow analysis (MFA) based representation of the neodymium magnet (NdFeB) supply chain, we show that supply chain resilience is composed of various mechanisms, including (a) resistance, (b) rapidity, and (c) flexibility, that originate from different parts of the supply chain. We make recommendations to improve the capacity of the NdFeB system to deal with future disruptions and discuss potential generalities for the resilience of other material supply chains.


Subject(s)
Metals, Rare Earth/analysis , Commerce , Metals, Rare Earth/economics , Minerals/economics , Neodymium/analysis , Taxes
8.
Environ Sci Technol ; 48(16): 9506-13, 2014 Aug 19.
Article in English | MEDLINE | ID: mdl-25029356

ABSTRACT

Neodymium, one of the more critically scarce rare earth metals, is often used in sustainable technologies. In this study, we investigate the potential contribution of neodymium recycling to reducing scarcity in supply, with a case study on computer hard disk drives (HDDs). We first review the literature on neodymium production and recycling potential. From this review, we find that recycling of computer HDDs is currently the most feasible pathway toward large-scale recycling of neodymium, even though HDDs do not represent the largest application of neodymium. We then use a combination of dynamic modeling and empirical experiments to conclude that within the application of NdFeB magnets for HDDs, the potential for loop-closing is significant: up to 57% in 2017. However, compared to the total NdFeB production capacity, the recovery potential from HDDs is relatively small (in the 1-3% range). The distributed nature of neodymium poses a significant challenge for recycling of neodymium.


Subject(s)
Computers , Neodymium , Recycling/methods , Humans , Magnets , Metallurgy/methods , Metallurgy/statistics & numerical data
9.
Environ Sci Technol ; 48(7): 3951-8, 2014 Apr 01.
Article in English | MEDLINE | ID: mdl-24576005

ABSTRACT

Neodymium is one of the more critical rare earth elements with respect to current availability and is most often used in high performance magnets. In this paper, we compare the virgin production route of these magnets with two hypothetical recycling processes in terms of environmental impact. The first recycling process looks at manual dismantling of computer hard disk drives (HDDs) combined with a novel hydrogen based recycling process. The second process assumes HDDs are shredded. Our life cycle assessment is based both on up to date literature and on our own experimental data. Because the production process of neodymium oxide is generic to all rare earths, we also report the life cycle inventory data for the production of rare earth oxides separately. We conclude that recycling of neodymium, especially via manual dismantling, is preferable to primary production, with some environmental indicators showing an order of magnitude improvement. The choice of recycling technology is also important with respect to resource recovery. While manual disassembly allows in principle for all magnetic material to be recovered, shredding leads to very low recovery rates (<10%).


Subject(s)
Magnets , Metals, Rare Earth/analysis , Boron/chemistry , Iron/chemistry , Neodymium/chemistry , Oxides/chemistry , Recycling
SELECTION OF CITATIONS
SEARCH DETAIL
...