Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Comput Assist Radiol Surg ; 16(12): 2119-2127, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34806143

ABSTRACT

PURPOSE: The treatment of intracranial arteriovenous malformations (AVM) is challenging due to their complex anatomy. For this vessel pathology, arteries are directly linked to veins without a capillary bed in between. For endovascular treatment, embolization is carried out, where the arteries that supply the AVM are consecutively blocked. A virtual embolization could support the medical expert in treatment planning. METHOD: We designed and implemented an immersive VR application that allows the visualization of the simulated blood flow by displaying millions of particles. Furthermore, the user can interactively block or unblock arteries that supply the AVM and analyze the altered blood flow based on pre-computed simulations. RESULTS: In a pilot study, the application was successfully adapted to three patient-specific cases. We performed a qualitative evaluation with two experienced neuroradiologist who regularly conduct AVM embolizations. The feature of virtually blocking or unblocking feeders was rated highly beneficial, and a desire for the inclusion of quantitative information was formulated. CONCLUSION: The presented application allows for virtual embolization and interactive blood flow visualization in an immersive virtual reality environment. It could serve as useful addition for treatment planning and education in clinical practice, supporting the understanding of AVM topology as well as understanding the influence of the AVM's feeding arteries.


Subject(s)
Embolization, Therapeutic , Intracranial Arteriovenous Malformations , Virtual Reality , Hemodynamics , Humans , Intracranial Arteriovenous Malformations/diagnostic imaging , Intracranial Arteriovenous Malformations/therapy , Pilot Projects
SELECTION OF CITATIONS
SEARCH DETAIL