Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cell Biol ; 25(13): 5639-47, 2005 Jul.
Article in English | MEDLINE | ID: mdl-15964819

ABSTRACT

The SSB family is comprised of four highly homologous proteins containing a C-terminal SOCS box motif and a central SPRY domain. No function has yet been ascribed to any member of this family in mammalian species despite a clear role for other SOCS proteins in negative regulation of cytokine signaling. To investigate its physiological role, the murine Ssb-2 gene was deleted by homologous recombination. SSB-2-deficient mice were shown to have a reduced rate of platelet production, resulting in very mild thrombocytopenia (25% decrease in circulating platelets). Tissue histology and other hematological parameters were normal, as was the majority of serum biochemistry, with the exception that blood urea nitrogen (BUN) levels were decreased in mice lacking SSB-2. Quantitative analysis of SSB mRNA levels indicated that SSB-1, -2, and -3 were ubiquitously expressed; however, SSB-4 was only expressed at very low levels. SSB-2 expression was observed in the kidney and in megakaryocytes, a finding consistent with the phenotype of mice lacking this gene. Deletion of SSB-2 thus perturbs the steady-state level of two tightly controlled homeostatic parameters and identifies a critical role for SSB-2 in regulating platelet production and BUN levels.


Subject(s)
DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , Gene Deletion , Repressor Proteins/chemistry , Repressor Proteins/genetics , Thrombocytopenia/etiology , Thrombocytopenia/genetics , Trans-Activators/chemistry , Trans-Activators/genetics , Amino Acid Motifs , Amino Acid Sequence , Animals , Blood Platelets/metabolism , Blood Urea Nitrogen , DNA-Binding Proteins/physiology , Mice , Protein Structure, Tertiary/genetics , RNA, Messenger/metabolism , Recombination, Genetic , Repressor Proteins/physiology , Sequence Deletion , Stem Cells , Suppressor of Cytokine Signaling Proteins , Trans-Activators/physiology
2.
J Leukoc Biol ; 66(4): 588-92, 1999 Oct.
Article in English | MEDLINE | ID: mdl-10534114

ABSTRACT

SOCS-1 was originally identified as an inhibitor of interleukin-6 signal transduction and is a member of a family of proteins (SOCS-1 to SOCS-7 and CIS) that contain an SH2 domain and a conserved carboxyl-terminal SOCS box motif. Mutation studies have established that critical contributions from both the amino-terminal and SH2 domains are essential for SOCS-1 and SOCS-3 to inhibit cytokine signaling. Inhibition of cytokine-dependent activation of STAT3 occurred in cells expressing either SOCS-1 or SOCS-3, but unlike SOCS-1, SOCS-3 did not directly interact with or inhibit the activity of JAK kinases. Although the conserved SOCS box motif appeared to be dispensable for SOCS-1 and SOCS-3 action when overexpressed, this domain interacts with elongin proteins and may be important in regulating protein turnover. In gene knockout studies, SOCS-1(-/-) mice were born but failed to thrive and died within 3 weeks of age with fatty degeneration of the liver and hemopoietic infiltration of several organs. The thymus in SOCS-1(-/-) mice was small, the animals were lymphopenic, and deficiencies in B lymphocytes were evident within hemopoietic organs. We propose that the absence of SOCS-1 in these mice prevents lymphocytes and liver cells from appropriately controlling signals from cytokines with cytotoxic side effects.


Subject(s)
Carrier Proteins/physiology , Intracellular Signaling Peptides and Proteins , Repressor Proteins , Signal Transduction , Animals , Carrier Proteins/genetics , Humans , Mice , Suppressor of Cytokine Signaling 1 Protein , Suppressor of Cytokine Signaling Proteins , src Homology Domains
3.
Cell ; 98(5): 597-608, 1999 Sep 03.
Article in English | MEDLINE | ID: mdl-10490099

ABSTRACT

Mice lacking suppressor of cytokine signaling-1 (SOCS1) develop a complex fatal neonatal disease. In this study, SOCS1-/- mice were shown to exhibit excessive responses typical of those induced by interferon gamma (IFNgamma), were hyperresponsive to viral infection, and yielded macrophages with an enhanced IFNgamma-dependent capacity to kill L. major parasites. The complex disease in SOCS1-/- mice was prevented by administration of anti-IFNgamma antibodies and did not occur in SOCS1-/- mice also lacking the IFNgamma gene. Although IFNgamma is essential for resistance to a variety of infections, the potential toxic action of IFNgamma, particularly in neonatal mice, appears to require regulation. Our data indicate that SOCS1 is a key modulator of IFNgamma action, allowing the protective effects of this cytokine to occur without the risk of associated pathological responses.


Subject(s)
Carrier Proteins/physiology , Gene Expression Regulation, Developmental , Interferon-gamma/antagonists & inhibitors , Repressor Proteins , Signal Transduction , Alphavirus Infections/mortality , Alphavirus Infections/prevention & control , Animals , Disease Susceptibility , Interferon-gamma/pharmacology , Interferon-gamma/physiology , Leishmania major/immunology , Leishmaniasis/mortality , Leishmaniasis/prevention & control , Lymphopenia/mortality , Lymphopenia/prevention & control , Macrophages/drug effects , Mice , Mice, Inbred C57BL , Mice, Mutant Strains , Semliki forest virus/immunology , Semliki forest virus/metabolism , Suppressor of Cytokine Signaling 1 Protein , Suppressor of Cytokine Signaling Proteins
4.
Proc Natl Acad Sci U S A ; 95(1): 114-9, 1998 Jan 06.
Article in English | MEDLINE | ID: mdl-9419338

ABSTRACT

The four members of the recently identified suppressor of cytokines signaling family (SOCS-1, SOCS-2, SOCS-3, and CIS, where CIS is cytokine-inducible SH2-containing protein) appear, by various means, to negatively regulate cytokine signal transduction. Structurally, the SOCS proteins are composed of an N-terminal region of variable length and amino acid composition, a central SH2 domain, and a previously unrecognized C-terminal motif that we have called the SOCS box. By using the SOCS box amino acid sequence consensus, we have searched DNA databases and have identified a further 16 proteins that contain this motif. These proteins fall into five classes based on the protein motifs found N-terminal of the SOCS box. In addition to four new SOCS proteins (SOCS-4 to SOCS-7) containing an SH2 domain and a SOCS box, we describe three new families of proteins that contain either WD-40 repeats (WSB-1 and -2), SPRY domains (SSB-1 to -3) or ankyrin repeats (ASB-1 to -3) N-terminal of the SOCS box. In addition, we show that a class of small GTPases also contains a SOCS box. The expression of representative members of each class of proteins differs markedly, as does the regulation of expression by cytokines. The function of the WSB, SSB, and ASB protein families remains to be determined.


Subject(s)
Carrier Proteins , DNA-Binding Proteins , Immediate-Early Proteins/physiology , Proteins/physiology , Repressor Proteins , Signal Transduction , Trans-Activators , Transcription Factors , src Homology Domains , Amino Acid Sequence , Animals , Binding Sites , Conserved Sequence , Immediate-Early Proteins/chemistry , Mice , Molecular Sequence Data , Proteins/chemistry , Sequence Alignment , Suppressor of Cytokine Signaling 1 Protein , Suppressor of Cytokine Signaling 3 Protein , Suppressor of Cytokine Signaling Proteins
SELECTION OF CITATIONS
SEARCH DETAIL