Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 146
Filter
1.
Ecol Lett ; 27(5): e14433, 2024 May.
Article in English | MEDLINE | ID: mdl-38712704

ABSTRACT

The negative diversity-invasion relationship observed in microbial invasion studies is commonly explained by competition between the invader and resident populations. However, whether this relationship is affected by invader-resident cooperative interactions is unknown. Using ecological and mathematical approaches, we examined the survival and functionality of Aminobacter niigataensis MSH1 to mineralize 2,6-dichlorobenzamide (BAM), a groundwater micropollutant affecting drinking water production, in sand microcosms when inoculated together with synthetic assemblies of resident bacteria. The assemblies varied in richness and in strains that interacted pairwise with MSH1, including cooperative and competitive interactions. While overall, the negative diversity-invasion relationship was retained, residents engaging in cooperative interactions with the invader had a positive impact on MSH1 survival and functionality, highlighting the dependency of invasion success on community composition. No correlation existed between community richness and the delay in BAM mineralization by MSH1. The findings suggest that the presence of cooperative residents can alleviate the negative diversity-invasion relationship.


Subject(s)
Microbiota , Benzamides , Microbial Interactions , Phyllobacteriaceae/physiology , Groundwater/microbiology , Biodiversity
2.
Environ Sci Technol ; 58(6): 2859-2869, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38289638

ABSTRACT

2,6-Dichlorobenzamide (BAM) is an omnipresent micropollutant in European groundwaters. Aminobacter niigataensis MSH1 is a prime candidate for biologically treating BAM-contaminated groundwater since this organism is capable of utilizing BAM as a carbon and energy source. However, detailed information on the BAM degradation kinetics by MSH1 at trace concentrations is lacking, while this knowledge is required for predicting and optimizing the degradation process. Contaminating assimilable organic carbon (AOC) in media makes the biodegradation experiment a mixed-substrate assay and hampers exploration of pollutant degradation at trace concentrations. In this study, we examined how the BAM concentration affects MSH1 growth and BAM substrate utilization kinetics in a AOC-restricted background to avoid mixed-substrate conditions. Conventional Monod kinetic models were unable to predict kinetic parameters at low concentrations from kinetics determined at high concentrations. Growth yields on BAM were concentration-dependent and decreased substantially at trace concentrations; i.e., growth of MSH1 diminished until undetectable levels at BAM concentrations below 217 µg-C/L. Nevertheless, BAM degradation continued. Decreasing growth yields at lower BAM concentrations might relate to physiological adaptations to low substrate availability or decreased expression of downstream steps of the BAM catabolic pathway beyond 2,6-dichlorobenzoic acid (2,6-DCBA) that ultimately leads to Krebs cycle intermediates for growth and energy conservation.


Subject(s)
Benzamides , Carbon , Phyllobacteriaceae , Biodegradation, Environmental , Benzamides/metabolism , Carbon/metabolism
3.
Article in English | MEDLINE | ID: mdl-37200213

ABSTRACT

Strain MDTJ8T is a chain-elongating thermophilic bacterium isolated from a thermophilic acidogenic anaerobic digestor treating human waste while producing the high commodity chemical n-caproate. The strain grows and produces formate, acetate, n-butyrate, n-caproate and lactate from mono-, di- and polymeric saccharides at 37-60 °C (optimum, 50-55 °C) and at pH 5.0-7.0 (optimum, pH 6.5). The organism is an obligate anaerobe, is motile and its cells form rods (0.3-0.5×1.0-3.0 µm) that stain Gram-positive and occur primarily as chains. Phylogenetic analysis of both the 16S rRNA gene and full genome sequence shows that strain MDTJ8T belongs to a group that consists of mesophylic chain-elongating bacteria within the family Oscillospiraceae, being nearest to Caproicibacter fermentans EA1T (94.8 %) and Caproiciproducens galactitolivorans BS-1T (93.7 %). Its genome (1.96 Mbp) with a G+C content of 49.6 mol% is remarkably smaller than those of other chain-elongating bacteria of the family Oscillospiraceae. Pairwise average nucleotide identity and DNA-DNA hybridization values between strain MDJT8T and its mesophilic family members are less than 70 and 35 %, respectively, while pairwise average amino acid identity values are less than 68 %. In addition, strain MDJT8T uses far less carbohydrate and non-carbohydrate substrates compared to its nearest family members. The predominant cellular fatty acids of strain MDTJ8T are C14 : 0, C14 : 0 DMA (dimethyl acetal) and C16 : 0, while its polar lipid profile shows three unidentified glycophospholipids, 11 glycolipids, 13 phospholipids and six unidentified lipids. No respiratory quinones and polyamines are detected. Based on its phylogenetic, genotypic, morphological, physiological, biochemical and chemotaxonomic characteristics, strain MDTJ8T represents a novel species and novel genus of the family Oscillospiraceae and Thermocaproicibacter melissae gen. nov., sp. nov. is proposed as its name. The type strain is MDTJ8T (=DSM 114174T=LMG 32615T=NCCB 100883T).


Subject(s)
Fatty Acids , Lactobacillales , Humans , Fatty Acids/chemistry , Phylogeny , RNA, Ribosomal, 16S/genetics , Caproates , Base Composition , Bacterial Typing Techniques , DNA, Bacterial/genetics , Sequence Analysis, DNA , Phospholipids/analysis , Bacteria, Anaerobic , Polymers , Lactobacillales/genetics
4.
Bioresour Technol ; 367: 128170, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36283667

ABSTRACT

A thermophilic chain elongating bacterium, strain MDTJ8, was isolated from a thermophilic acidogenic anaerobic digestor producing n-caproate from human waste, growing optimally at 50-55 °C and pH 6.5. 16S rRNA gene analysis suggests that MDTJ8 represents a new species/genus within a group currently composed of mesophilic chain elongators of the Oscillospiraceae family. Genome analysis showed that strain MDTJ8 contains homologues of genes encoding for chain elongation and energy conservation but also indicated n-caproate production from carbohydrates including polymeric substances. This was confirmed by culturing experiments in which MDTJ8 converted, at pH 6.5 and 55 °C, mono-, di- and polymeric carbohydrates (starch and hemicellulose) to n-caproate reaching concentrations up to 283 mg/L and accounting for up to 10 % of the measured fermentation products. MDTJ8 is the first axenic organism that thermophilically performs chain elongation, opening doors to understand and intensify thermophilic bioprocesses targeting anaerobic digestion towards the production of the value-added chemical n-caproate.


Subject(s)
Bacteria , Caproates , Humans , RNA, Ribosomal, 16S/genetics , Fermentation , Bacteria/genetics , Hexoses
5.
Environ Sci Technol ; 56(2): 1352-1364, 2022 01 18.
Article in English | MEDLINE | ID: mdl-34982540

ABSTRACT

Bioaugmentation often involves an invasion process requiring the establishment and activity of a foreign microbe in the resident community of the target environment. Interactions with resident micro-organisms, either antagonistic or cooperative, are believed to impact invasion. However, few studies have examined the variability of interactions between an invader and resident species of its target environment, and none of them considered a bioremediation context. Aminobacter sp. MSH1 mineralizing the groundwater micropollutant 2,6-dichlorobenzamide (BAM), is proposed for bioaugmentation of sand filters used in drinking water production to avert BAM contamination. We examined the nature of the interactions between MSH1 and 13 sand filter resident bacteria in dual and triple species assemblies in sand microcosms. The residents affected MSH1-mediated BAM mineralization without always impacting MSH1 cell densities, indicating effects on cell physiology rather than on cell number. Exploitative competition explained most of the effects (70%), but indications of interference competition were also found. Two residents improved BAM mineralization in dual species assemblies, apparently in a mutual cooperation, and overruled negative effects by others in triple species systems. The results suggest that sand filter communities contain species that increase MSH1 fitness. This opens doors for assisting bioaugmentation through co-inoculation with "helper" bacteria originating from and adapted to the target environment.


Subject(s)
Groundwater , Phyllobacteriaceae , Water Purification , Bacteria , Benzamides , Biodegradation, Environmental , Water Purification/methods
6.
Appl Environ Microbiol ; 88(3): e0164821, 2022 02 08.
Article in English | MEDLINE | ID: mdl-34878814

ABSTRACT

Promiscuous plasmids like IncP-1 plasmids play an important role in the bacterial adaptation to pollution by acquiring and distributing xenobiotic catabolic genes. However, most information comes from isolates and the role of plasmids in governing community-wide bacterial adaptation to xenobiotics and other adaptive forces is not fully understood. Current information on the contribution of IncP-1 plasmids in community adaptation is limited because methods are lacking that directly isolate and identify the plasmid borne adaptive functions in whole-community DNA. In this study, we optimized long-range PCR to directly access and identify the cargo carried by IncP-1 plasmids in environmental DNA. The DNA between the IncP-1 backbone genes trbP and traC, a main insertion site of adaptive trait determinants, is amplified and its content analyzed by high-throughput sequencing. The method was applied to DNA of an on-farm biopurification system (BPS), treating pesticide contaminated wastewater, to examine whether horizontal gene exchange of catabolic functions by IncP-1 plasmids is a main driver of community adaptation in BPS. The cargo recovered from BPS community DNA encoded catabolic but also resistance traits and various other (un)known functions. Unexpectedly, genes with catabolic traits composed only a minor fraction of the cargo, indicating that the IncP-1 region between trbP and traC is not a major contributor to catabolic adaptation of the BPS microbiome. Instead, it contains a functionally diverse set of genes which either may assist biodegradation functions, be remnants of random gene recruitment, or confer other crucial functions for proliferation in the BPS environment. IMPORTANCE This study presents a long-range PCR for direct and cultivation-independent access to the identity of the cargo of a major insertion hot spot of adaptive genes in IncP-1 plasmids and hence a new mobilome tool for understanding the role of IncP-1 plasmids in complex communities. The method was applied to DNA of an on-farm biopurification system (BPS) treating pesticide-contaminated wastewater, aiming at new insights on whether horizontal exchange of catabolic functions by IncP-1 plasmids is a main driver of community adaptation in BPS. Unexpectedly, catabolic functions represented a small fraction of the cargo genes while multiple other gene functions were recovered. These results show that the cargo of the target insertion hot spot in IncP-1 plasmids in a community, not necessarily relates to the main obvious selective trait imposed on that community. Instead, these functions might contribute to adaptation to unknown selective forces or represent remnants of random gene recruitment.


Subject(s)
Microbiota , Pesticides , DNA, Bacterial/genetics , Farms , Pesticides/metabolism , Plasmids/genetics , Polymerase Chain Reaction , Wastewater/microbiology
7.
Sci Rep ; 11(1): 18943, 2021 09 23.
Article in English | MEDLINE | ID: mdl-34556718

ABSTRACT

Aminobacter sp. MSH1 (CIP 110285) can use the pesticide dichlobenil and its recalcitrant transformation product, 2,6-dichlorobenzamide (BAM), as sole source of carbon, nitrogen, and energy. The concentration of BAM in groundwater often exceeds the threshold limit for drinking water, requiring additional treatment in drinking water treatment plants or closure of the affected abstraction wells. Biological treatment with MSH1 is considered a potential sustainable alternative to remediate BAM-contamination in drinking water production. We present the complete genome of MSH1, which was determined independently in two institutes at Aarhus University and KU Leuven. Divergences were observed between the two genomes, i.e. one of them lacked four plasmids compared to the other. Besides the circular chromosome and the two previously described plasmids involved in BAM catabolism, pBAM1 and pBAM2, the genome of MSH1 contained two megaplasmids and three smaller plasmids. The MSH1 substrain from KU Leuven showed a reduced genome lacking a megaplasmid and three smaller plasmids and was designated substrain MK1, whereas the Aarhus variant with all plasmids was designated substrain DK1. A plasmid stability experiment indicate that substrain DK1 may have a polyploid chromosome when growing in R2B medium with more chromosomes than plasmids per cell. Finally, strain MSH1 is reassigned as Aminobacter niigataensis MSH1.


Subject(s)
Benzamides/metabolism , Groundwater/chemistry , Phyllobacteriaceae/genetics , Water Purification/methods , Benzamides/toxicity , Biodegradation, Environmental , Genome, Bacterial , Herbicides/metabolism , Herbicides/toxicity , Nitriles/metabolism , Nitriles/toxicity , Phyllobacteriaceae/metabolism , Phylogeny , Plasmids/genetics , Polyploidy , Sequence Analysis, DNA
8.
FEMS Microbiol Ecol ; 97(5)2021 04 13.
Article in English | MEDLINE | ID: mdl-33784375

ABSTRACT

The frequent exposure of agricultural soils to pesticides can lead to microbial adaptation, including the development of dedicated microbial populations that utilize the pesticide compound as a carbon and energy source. Soil from an agricultural field in Halen (Belgium) with a history of linuron exposure has been studied for its linuron-degrading bacterial populations at two time points over the past decade and Variovorax was appointed as a key linuron degrader. Like most studies on pesticide degradation, these studies relied on isolates that were retrieved through bias-prone enrichment procedures and therefore might not represent the in situ active pesticide-degrading populations. In this study, we revisited the Halen field and applied, in addition to enrichment-based isolation, DNA stable isotope probing (DNA-SIP), to identify in situ linuron-degrading bacteria in linuron-exposed soil microcosms. Linuron dissipation was unambiguously linked to Variovorax and its linuron catabolic genes and might involve the synergistic cooperation between two species. Additionally, two novel linuron-mineralizing Variovorax isolates were obtained with high 16S rRNA gene sequence similarity to strains isolated from the same field a decade earlier. The results confirm Variovorax as a prime in situ degrader of linuron in the studied agricultural field soil and corroborate the genus as key for maintaining the genetic memory of linuron degradation functionality in that field.


Subject(s)
Herbicides , Linuron , Belgium , Biodegradation, Environmental , DNA, Bacterial/genetics , Isotopes , RNA, Ribosomal, 16S/genetics , Soil , Soil Microbiology
9.
Water Res ; 184: 116137, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-32750586

ABSTRACT

The formation of estrogenic intermediates, i.e. nonylphenol diethoxylate (NP2EO), nonylphenol monoethoxylate (NP1EO), and nonylphenol (NP), following nonylphenol ethoxylates (NPEOs) biodegradation in textile wastewater raises concerns about its endocrine disruptive activity, but the estrogenicity changes of textile wastewater throughout biological treatment processes remain unknown. In the present study, the estrogenicity of textile wastewater sampled from 10 wastewater treatment plants (WWTPs) were investigated using the reporter gene-based T47D-KBluc bioassay. Results showed that the estrogenicity of the textile wastewater significantly increased after either anaerobic or aerobic treatment in all WWTPs, with an average fold change of 3.21, although traditional pollutants were effectively removed. The estradiol equivalents of the effluent (ranging from 1.50 to 4.12 ng-E2/L) were generally higher than published effect based trigger values, indicating an increased risk for the receiving waters. Removal efficiency was high (84.46%) for NPEOs, but was low for NP2EO and NP1EO in the biological treatment processes. Nevertheless, NP had increased concentrations after the treatment. Bioanalytical equivalent concentration of the textile wastewater and that of NP2EO, NP1EO, and NP showed a good linear correlation, of which NP alone contributed more than 70% to the observed estrogenicity. Extending hydraulic retention time was found effective in reducing the estrogenicity as it allows relatively complete degradation of NP, which was further confirmed by running lab-scale A/O reactors fed with NP10EO. The results may extend our knowledge regarding the estrogenicity of textile wastewater and its reduction technologies used in WWTPs.


Subject(s)
Wastewater , Water Pollutants, Chemical , Ethylene Glycols , Textiles , Wastewater/analysis , Water Pollutants, Chemical/analysis
10.
Appl Microbiol Biotechnol ; 104(18): 8037-8048, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32700087

ABSTRACT

Proteins, an important fraction of the organic matter in wastewater, typically enter a treatment facility as high molecular weight components. These components are degraded by extracellular protein hydrolytic enzymes, denoted as proteases. Adequate protein hydrolysis monitoring is crucial, since protein hydrolysis is often a rate-limiting step in wastewater treatment. However, current monitoring tools lack a high sample throughput and reliable quantification. Here, we present an improved assay for high-throughput protein hydrolysis rate measurements in wastewater treatment applications. A BODIPY FL casein model substrate was implemented in a microplate format for continuous fluorescent quantification. Case studies on a conventional and a high-rate aerobic municipal wastewater treatment plant and a lab-scale, two-stage, anaerobic reactor provided proof-of-concept. The assay presented in this study can help to obtain monitoring-based process insights, which will in turn allow improving biological performance of wastewater treatment installations in the future. KEY POINTS: • Protein hydrolysis is a crucial step in biological wastewater treatment. • Quantification of the protein hydrolysis rate enables in-depth process knowledge. • BODIPY FL casein is a suitable model substrate for a protein hydrolysis assay. • High sample throughput was obtained with fluorescent hydrolysis quantification. Graphical abstract.


Subject(s)
Wastewater , Water Purification , Anaerobiosis , Bioreactors , Endopeptidases , Hydrolysis , Sewage , Waste Disposal, Fluid
11.
Environ Sci Technol ; 54(15): 9387-9397, 2020 08 04.
Article in English | MEDLINE | ID: mdl-32569463

ABSTRACT

Our understanding of the microorganisms involved in in situ biodegradation of xenobiotics, like pesticides, in natural and engineered environments is poor. On-farm biopurification systems (BPSs) treat farm-produced pesticide-contaminated wastewater to reduce surface water pollution. BPSs are a labor and cost-efficient technology but are still mainly operated as black box systems. We used DNA-stable isotope probing (DNA-SIP) and classical enrichment to be informed about the organisms responsible for in situ degradation of the phenylurea herbicide linuron in a BPS matrix. DNA-SIP identified Ramlibacter, Variovorax, and an unknown Comamonadaceae genus as the dominant linuron assimilators. While linuron-degrading Variovorax strains have been isolated repeatedly, Ramlibacter has never been associated before with linuron degradation. Genes and mobile genetic elements (MGEs) previously linked to linuron catabolism were enriched in the heavy DNA-SIP fractions, suggesting their involvement in in situ linuron assimilation. BPS material free cultivation of linuron degraders from the same BPS matrix resulted in a community dominated by Variovorax, while Ramlibacter was not observed. Our study provides evidence for the role of Variovorax in in situ linuron biodegradation in a BPS, alongside other organisms like Ramlibacter, and further shows that cultivation results in a biased representation of the in situ linuron-assimilating bacterial populations.


Subject(s)
Linuron , Microbiota , Biodegradation, Environmental , DNA, Bacterial/genetics , Farms , Isotopes , Microbiota/genetics , Soil Microbiology
12.
Genome Biol Evol ; 12(6): 827-841, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32359160

ABSTRACT

Biodegradation of the phenylurea herbicide linuron appears a specialization within a specific clade of the Variovorax genus. The linuron catabolic ability is likely acquired by horizontal gene transfer but the mechanisms involved are not known. The full-genome sequences of six linuron-degrading Variovorax strains isolated from geographically distant locations were analyzed to acquire insight into the mechanisms of genetic adaptation toward linuron metabolism. Whole-genome sequence analysis confirmed the phylogenetic position of the linuron degraders in a separate clade within Variovorax and indicated that they unlikely originate from a common ancestral linuron degrader. The linuron degraders differentiated from Variovorax strains that do not degrade linuron by the presence of multiple plasmids of 20-839 kb, including plasmids of unknown plasmid groups. The linuron catabolic gene clusters showed 1) high conservation and synteny and 2) strain-dependent distribution among the different plasmids. Most of them were bordered by IS1071 elements forming composite transposon structures, often in a multimeric array configuration, appointing IS1071 as a key element in the recruitment of linuron catabolic genes in Variovorax. Most of the strains carried at least one (catabolic) broad host range plasmid that might have been a second instrument for catabolic gene acquisition. We conclude that clade 1 Variovorax strains, despite their different geographical origin, made use of a limited genetic repertoire regarding both catabolic functions and vehicles to acquire linuron biodegradation.


Subject(s)
Adaptation, Biological/genetics , Comamonadaceae/genetics , Herbicides/metabolism , Linuron/metabolism , Plasmids , Comamonadaceae/metabolism , Genome, Bacterial , Phylogeny
13.
Front Microbiol ; 11: 149, 2020.
Article in English | MEDLINE | ID: mdl-32132980

ABSTRACT

PromA plasmids are broad host range (BHR) plasmids, which are often cryptic and hence have an uncertain ecological role. We present three novel PromA γ plasmids which carry genes associated with degradation of the phenylurea herbicide linuron, two of which originated from unrelated Hydrogenophaga hosts isolated from different environments (pPBL-H3-2 and pBPS33-2), and one (pEN1) which was exogenously captured from an on-farm biopurification system (BPS). Hydrogenophaga sp. plasmid pBPS33-2 carries all three necessary gene clusters (hylA, dca, ccd) determining the three main steps for conversion of linuron to Krebs cycle intermediates, while pEN1 only determines the initial linuron hydrolysis step. Hydrogenophaga sp. plasmid pPBL-H3-2 exists as two variants, both containing ccd but with the hylA and dca gene modules interchanged between each other at exactly the same location. Linuron catabolic gene clusters that determine the same step were identical on all plasmids, encompassed in differently arranged constellations and characterized by the presence of multiple IS1071 elements. In all plasmids except pEN1, the insertion spot of the catabolic genes in the PromA γ plasmids was the same. Highly similar PromA plasmids carrying the linuron degrading gene cargo at the same insertion spot were previously identified in linuron degrading Variovorax sp. Interestingly, in both Hydrogenophaga populations not every PromA plasmid copy carries catabolic genes. The results indicate that PromA plasmids are important vehicles of linuron catabolic gene dissemination, rather than being cryptic and only important for the mobilization of other plasmids.

14.
Environ Sci Technol ; 53(17): 10146-10156, 2019 Sep 03.
Article in English | MEDLINE | ID: mdl-31386350

ABSTRACT

2,6-Dichlorobenzamide (BAM) is a major groundwater micropollutant posing problems for drinking water treatment plants (DWTPs) that depend on groundwater intake. Aminobacter sp. MSH1 uses BAM as the sole source of carbon, nitrogen, and energy and is considered a prime biocatalyst for groundwater bioremediation in DWTPs. Its use in bioremediation requires knowledge of its BAM-catabolic pathway, which is currently restricted to the amidase BbdA converting BAM into 2,6-dichlorobenzoic acid (2,6-DCBA) and the monooxygenase BbdD transforming 2,6-DCBA into 2,6-dichloro-3-hydroxybenzoic acid. Here, we show that the 2,6-DCBA catabolic pathway is unique and differs substantially from catabolism of other chlorobenzoates. BbdD catalyzes a second hydroxylation, forming 2,6-dichloro-3,5-dihydroxybenzoic acid. Subsequently, glutathione-dependent dehalogenases (BbdI and BbdE) catalyze the thiolytic removal of the first chlorine. The remaining chlorine is then removed hydrolytically by a dehalogenase of the α/ß hydrolase superfamily (BbdC). BbdC is the first enzyme in that superfamily associated with dehalogenation of chlorinated aromatics and appears to represent a new subtype within the α/ß hydrolase dehalogenases. The activity of BbdC yields a unique trihydroxylated aromatic intermediate for ring cleavage that is performed by an extradiol dioxygenase (BbdF) producing 2,4,6-trioxoheptanedioic acid, which is likely converted to Krebs cycle intermediates by BbdG.


Subject(s)
Groundwater , Phyllobacteriaceae , Benzamides , Biodegradation, Environmental , Chlorobenzoates
15.
Appl Microbiol Biotechnol ; 103(21-22): 9191-9203, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31414161

ABSTRACT

Anaerobic digestion (AD) is a biological process that is acquiring increasing attention for both solid waste and wastewater treatment, as well as for the production of valuable chemicals. Despite the importance of the inoculum, the relationship between inoculum community composition, reactor performance, and reactor community composition remains vague. To understand the impact of the starting community on the composition and functioning of the AD microbiome, we studied three sets of biologically replicated AD reactors inoculated with different communities, but operated identically, targeting both total and active community compositions. All reactors performed highly similar regarding volatile fatty acid and methane production. The community analyses showed reproducible total and active community compositions in replicate reactors, indicating that particularly deterministic factors shaped the AD community. Moreover, strong variation in community composition between the differently seeded reactors was observed, indicating the role of inoculum composition in community shaping. In all three reactor sets, especially species that were low abundant or even not detected in the inoculum contributed to the reactor communities, supporting the importance of functional redundancy and high diversity in inocula used for AD seeding. The careful start-up of the AD process using initially low organic loading rates likely contributed to the successful assembly of initial low-abundance/rare species into a new cooperative AD community in the reactors.


Subject(s)
Bacteria/metabolism , Bioreactors/microbiology , Microbiota , Anaerobiosis , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Biodegradation, Environmental , Fatty Acids, Volatile/metabolism , Wastewater/microbiology
16.
Chemosphere ; 228: 427-436, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31051344

ABSTRACT

Sand filters (SFs) are commonly applied in drinking water treatment plants (DWTPs) for removal of iron and manganese but also show potential for microbial degradation of pesticide residues. The latter is advantageous in case the intake water contains pesticide residues. However, whether this involves mineralization suggesting no generation of harmful transformation products, its consistency over time, and how this ability relates to physicochemical and biological characteristics of the DWTP intake water and the SFs is unknown. The capacity to mineralize the herbicides bentazon and 2-methyl-4-chlorophenoxyacetic acid (MCPA) was examined in SF samples from 11 DWTPs differing in operation, intake water composition and pesticide contamination level. MCPA was mineralized in all biologically active SFs while mineralization of bentazon occurred rarely. Mineralization of both compounds was consistent in time and across samples taken from different SF units of the same DWTP. Kinetic modelling of mineralization curves suggested the occurrence of growth linked bentazon and MCPA mineralization in several SF samples. Multivariate analysis correlating intake water/SF characteristics with pesticide mineralization indicated that pesticide mineralization capacity depended on a range of intake water characteristics, but was not necessarily explained by the presence of the pesticide in the intake water and hence the in situ exposure of the SF community to the pesticide. This was supported by testing a sample from DWTP Kluizen for its capacity to mineralize 5 other pesticides including pesticides not present or occasionally present in the intake water. All of those pesticides were mineralized as well.


Subject(s)
Pesticides/chemistry , Water Pollutants, Chemical/chemistry , Water Purification/methods , Drinking Water
17.
FEMS Microbiol Ecol ; 95(1)2019 01 01.
Article in English | MEDLINE | ID: mdl-30380047

ABSTRACT

The tfd genes mediating degradation of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) differ in composition and organization in bacterial isolates from different geographical origin and are carried by different types of mobile genetic elements (MGE). It is not known whether such global diversity of 2,4-D-catabolic MGE and their tfd gene cargo is reflected in the diversity at field scale. The genomic context of the 2,4-D catabolic genes of 2,4-D-degrading isolates from two rice fields with a 2,4-D application history, located in two distant provinces of the Vietnam Mekong delta, was compared. All isolates were ß-proteobacteria, were unique for each rice field and carried the catabolic genes on MGE and especially plasmids. Most plasmids were IncP-1ß plasmids and carried tfd clusters highly similar to those of the IncP-1ß plasmid pJP4, typified by two chlorophenol catabolic gene modules (tfd-I and tfd-II). IncP-1ß plasmids from the same field showed small deletions and/or insertions in accessory metabolic genes. One plasmid belonged to an unclassified plasmid group and carries a copy of both tfdA and tfd-II identical to those in the IncP-1ß plasmids. Our results indicate intra-field evolution and inter-field exchange of 2,4-D-catabolic IncP-1ß plasmids as well as the exchange of tfd genes between different plasmids within a confined local environment.


Subject(s)
2,4-Dichlorophenoxyacetic Acid/metabolism , Bacterial Proteins/genetics , Betaproteobacteria/metabolism , Herbicides/metabolism , Oryza/growth & development , Oryza/microbiology , Plasmids/genetics , Soil Microbiology , Bacterial Proteins/metabolism , Betaproteobacteria/classification , Betaproteobacteria/genetics , Betaproteobacteria/isolation & purification , Biodegradation, Environmental , Interspersed Repetitive Sequences , Plasmids/metabolism , Vietnam
18.
Environ Microbiol ; 20(11): 4091-4111, 2018 11.
Article in English | MEDLINE | ID: mdl-30207068

ABSTRACT

IS1071, an insertion element that primarily flanks organic xenobiotic degradation genes in cultured isolates, is suggested to play a key role in the formation and distribution of bacterial catabolic pathway gene clusters. However, in environmental settings, the identity of the IS1071 genetic cargo and its correspondence to the local selective conditions remain unknown. To respond, we developed a long-range PCR approach amplifying accessory genes between two IS1071 copies from community DNA followed by amplicon sequencing. We applied this method to pesticide-exposed environments, i.e. linuron-treated agricultural soil and on-farm biopurification systems (BPS) treating complex agricultural wastewater, as to non-treated controls. Amplicons were mainly recovered from the pesticide-exposed environments and the BPS matrix showed a higher size diversity compared to the agricultural soil. Retrieved gene functions mirrored the main selection pressure as (i) a large fraction of the BPS amplicons contained a high variety of genes/gene clusters related to the degradation of organics including herbicides present in the wastewater and (ii) in the agricultural soil, recovered genes were associated with linuron degradation. Our metagenomic analysis extends observations from cultured isolates and provides evidence that IS1071 is a carrier of catabolic genes in xenobiotica stressed environments and contributes to community level adaptation towards pesticide biodegradation.


Subject(s)
Bacteria/genetics , Bacteria/metabolism , DNA Transposable Elements , Pesticides/metabolism , Soil Microbiology , Bacteria/classification , Bacteria/isolation & purification , Biodegradation, Environmental , DNA, Bacterial/genetics , Ecology , Herbicides/metabolism , Linuron/metabolism , Metagenomics , RNA, Ribosomal, 16S/genetics , Wastewater/microbiology
19.
Appl Microbiol Biotechnol ; 102(18): 7963-7979, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29984394

ABSTRACT

Aminobacter sp. MSH1 uses the groundwater micropollutant 2,6-dichlorobenzamide (BAM) as sole source of carbon and energy. In the first step, MSH1 converts BAM to 2,6-dichlorobenzoic acid (2,6-DCBA) by means of the BbdA amidase encoded on the IncP-1ß plasmid pBAM1. Information about the genes and degradation steps involved in 2,6-DCBA metabolism in MSH1 or any other organism is currently lacking. Here, we show that the genes for 2,6-DCBA degradation in strain MSH1 reside on a second catabolic plasmid in MSH1, designated as pBAM2. The complete sequence of pBAM2 was determined revealing that it is a 53.9 kb repABC family plasmid. The 2,6-DCBA catabolic genes on pBAM2 are organized in two main clusters bordered by IS elements and integrase genes and encode putative functions like Rieske mono-/dioxygenase, meta-cleavage dioxygenase, and reductive dehalogenases. The putative mono-oxygenase encoded by the bbdD gene was shown to convert 2,6-DCBA to 3-hydroxy-2,6-dichlorobenzoate (3-OH-2,6-DCBA). 3-OH-DCBA was degraded by wild-type MSH1 and not by a pBAM2-free MSH1 variant indicating that it is a likely intermediate in the pBAM2-encoded DCBA catabolic pathway. Based on the activity of BbdD and the putative functions of the other catabolic genes on pBAM2, a metabolic pathway for BAM/2,6-DCBA in strain MSH1 was suggested.


Subject(s)
Benzamides/metabolism , Chlorobenzoates/metabolism , Groundwater/microbiology , Phyllobacteriaceae/metabolism , Plasmids/genetics , Water Pollutants, Chemical/metabolism , Amidohydrolases/genetics , Amidohydrolases/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biodegradation, Environmental , Dioxygenases/genetics , Dioxygenases/metabolism , Phyllobacteriaceae/enzymology , Phyllobacteriaceae/genetics , Plasmids/metabolism
20.
Biofouling ; 34(3): 237-251, 2018 03.
Article in English | MEDLINE | ID: mdl-29448813

ABSTRACT

The influence of membrane surface charge on biofouling community composition during activated sludge filtration in a membrane bioreactor was investigated in this study using polyacrylonitrile-based membranes. Membranes with different surface properties were synthesized by phase inversion followed by a layer-by-layer modification. Various characterization results showed that the membranes differed only in their surface chemical composition and charge, ie two of them were negative, one neutral and one positive. Membrane fouling experiments were performed for 40 days and the biofouling communities were analyzed. PCR-DGGE fingerprinting indicated selective enrichment of bacterial populations from the sludge suspension within the biofilms at any time point. The biofilm community composition seemed to change with time. However, no difference was observed between the biofilm community of differently charged membranes at specific time points. It could be concluded that membrane charges do not play a decisive role in the long-term selection of the key bacterial foulants.


Subject(s)
Bacterial Physiological Phenomena , Biofilms , Biofouling , Bioreactors/microbiology , Sewage/microbiology , Acrylic Resins , Filtration , Membranes, Artificial
SELECTION OF CITATIONS
SEARCH DETAIL
...