Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Condens Matter ; 35(17)2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36735967

ABSTRACT

Resonant inelastic x-ray scattering (RIXS) using an incident energy tuned to the uraniumN4,5absorption edges is reported from epitaxial films ofα-U3O8and UN. Theory shows that for U3O8the multiplets associated with a 5f1configuration with a ground state of2F5/2and the excited state of2F7/2are observed. However, the strong transition predicted at a transfer energy of 1.67 eV is not observed. We assume this is a consequence of the intermediate state lifetime broadening due to interaction with continuum states when the transferred energy exceeds the onset of the continuum in the presence of the core hole. This hypothesis is supported by the results obtained for the 5f-itinerant system UN, where no sharp transitions have been observed, although the broad scattering response centred at ∼1 eV is considered a signature of a predominantly 5f3configuration in this band-like semi-metallic system. These experiments and theory add important information on these materials, both of which have been investigated since the 1960s, as well as whether RIXS at the uraniumNedge can become a valuable tool for actinide research.

2.
Inorg Chem ; 55(16): 8059-70, 2016 Aug 15.
Article in English | MEDLINE | ID: mdl-27490370

ABSTRACT

XPS determination of the oxygen coefficient kO = 2 + x and ionic (U(4+), U(5+), and U(6+)) composition of oxides UO2+x formed on the surfaces of differently oriented (hkl) planes of thin UO2 films on LSAT (Al10La3O51Sr14Ta7) and YSZ (yttria-stabilized zirconia) substrates was performed. The U 4f and O 1s core-electron peak intensities as well as the U 5f relative intensity before and after the (129)Xe(23+) and (238)U(31+) irradiations were employed. It was found that the presence of uranium dioxide film in air results in formation of oxide UO2+x on the surface with mean oxygen coefficients kO in the range 2.07-2.11 on LSAT and 2.17-2.23 on YSZ substrates. These oxygen coefficients depend on the substrate and weakly on the crystallographic orientation. On the basis of the spectral parameters it was established that uranium dioxide films AP2,3 on the LSAT substrates have the smallest kO values, and from the XRD and EBSD results it follows that these samples have a regular monocrystalline structure. The XRD and EBSD results indicate that samples AP5-7 on the YSZ substrates have monocrystalline structure; however, they have the highest kO values. The observed difference in the kO values was probably caused by the different nature of the substrates: the YSZ substrates provide 6.4% compressive strain, whereas (001) LSAT substrates result only in 0.03% tensile strain in the UO2 films. (129)Xe(23+) irradiation (92 MeV, 4.8 × 10(15) ions/cm(2)) of uranium dioxide films on the LSAT substrates was shown to destroy both long-range ordering and uranium close environment, which results in an increase of uranium oxidation state and regrouping of oxygen ions in uranium close environment. (238)U(31+) (110 MeV, 5 × 10(10), 5 × 10(11), 5 × 10(12) ions/cm(2)) irradiations of uranium dioxide films on the YSZ substrates were shown to form the lattice damage only with partial destruction of the long-range ordering.

4.
Faraday Discuss ; 180: 301-11, 2015.
Article in English | MEDLINE | ID: mdl-25932469

ABSTRACT

X-ray diffraction has been used to probe the radiolytic corrosion of uranium dioxide. Single crystal thin films of UO(2) were exposed to an intense X-ray beam at a synchrotron source in the presence of water, in order to simultaneously provide radiation fields required to split the water into highly oxidising radiolytic products, and to probe the crystal structure and composition of the UO(2) layer, and the morphology of the UO(2)/water interface. By modeling the electron density, surface roughness and layer thickness, we have been able to reproduce the observed reflectivity and diffraction profiles and detect changes in oxide composition and rate of dissolution at the Ångström level, over a timescale of several minutes. A finite element calculation of the highly oxidising hydrogen peroxide product suggests that a more complex surface interaction than simple reaction with H(2)O(2) is responsible for an enhancement in the corrosion rate directly at the interface of water and UO(2), and this may impact on models of long-term storage of spent nuclear fuel.

SELECTION OF CITATIONS
SEARCH DETAIL
...