Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 806(Pt 3): 150608, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34606854

ABSTRACT

Nitrous oxide (N2O) emissions from dairy-grazing pastures can be dominated by large emissions from small areas ('hotspots') frequently used by grazing dairy cattle (i.e., water troughs and gateways). N2O emissions from these hotspots are quantified by investigating whether N2O emissions and emission factors (% of applied N emitted as N2O, EF3) from potential hotspots are different from non-hotspots. To better characterise N2O emissions from hotspots and non-hotspots of farms to understand their contributions to national agricultural greenhouse gas inventory calculations, a series of measurements were conducted during winter and spring on two NZ typical dairy farms with contrasting soil drainage (poorly versus well drained). Before measurements were taken, the soils either received a cow urine application or remained untreated. The results showed that changes in water-filled pore space (WFPS) and mineral N around water troughs and gateways, due to additional stock movements and disproportionate excreta-N deposition during previous grazing events, affected both background and total N2O emissions. But there was little impact on EF3 values (calculated using IPCC guidelines) from deposited urine between hotspot and pasture areas. These results suggest the same EF3 values can be used for both to calculate emissions from urine deposited on grazed pastures. However, these results raise concerns about higher background emission in hotspots subtracted from measured emissions from urine-N deposition in calculating EF3 values and discounting the effects of disproportionate N inputs in intensive agriculture on increased background emissions (legacy effect). This IPCC inventory method does not account for the legacy effect of N loading prior to the measurements which may underestimate the emissions. Thus, an allowance for higher hotspot background emissions could be included in the Inventory to accurately estimate total emissions from agriculture.


Subject(s)
Greenhouse Gases , Nitrous Oxide , Agriculture , Animals , Cattle , Farms , Female , Greenhouse Gases/analysis , Nitrous Oxide/analysis , Soil
2.
Rapid Commun Mass Spectrom ; 16(23): 2172-8, 2002.
Article in English | MEDLINE | ID: mdl-12442291

ABSTRACT

Measurements of some of the main internal N-cycling processes in soil were obtained by labelling the inorganic N pool with the stable isotope of nitrogen ((15)N). The (15)N mean pool dilution technique, combined with other field measurements, enabled gross and net N-mineralization rates to be resolved in grassland soils, which had previously either received fertilizer N (F), or had remained unfertilized (U) for many years. The two soils were subdivided into plots that received N at different time intervals (over 3 weeks), prior to (15)N measurements being made. By this novel approach, possible 'priming' effects over time were investigated to try to overcome some of the temporal problems of isotopic labelling of soil N (native plus fertilizer) and to identify possible changes in a range of primary N-transformation processes. The results suggested that an overall stimulation of microbially mediated processes occurred with all N treatments, but there were inconsistencies associated with the release of N, both in the timing and the degree to which different processes responded to the application of fertilizer N. The rates of these processes were, however, within the range of previously reported data and the (15)N measurements were not adversely affected by the differences in N pools created by the treatments. Thus, the mean pool dilution technique was shown to be applicable to agricultural soils, under conditions relevant to grass swards receiving fertilizer. For example, between the U and F treatments, the size of inorganic N pools increased by five-fold and gross rates of mineralization reached 3.5 and 4.8 microg N g(-1) (dry soil) d(-1), respectively, but did not vary greatly with the timing of N applications. A correlation (r(2) = 0.57) was found between soil respiration (which is relatively simple to measure) and net mineralization (which is more time consuming), suggesting that the former might be used as an indicator of the latter. Although this relationship was stronger in previously unfertilized soils, the similarities found with fertilized soils suggest that this approach could be used to obtain information of wider agronomic value and would, therefore, warrant further work under a range of soil conditions.


Subject(s)
Fertilizers/analysis , Minerals/metabolism , Nitrogen/chemistry , Soil Microbiology , Soil/analysis , Agriculture , Biodegradation, Environmental , Nitrogen Isotopes/analysis , Poaceae/metabolism , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...