Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Vet Sci ; 10: 1101502, 2023.
Article in English | MEDLINE | ID: mdl-37065215

ABSTRACT

Tritrichomonas foetus (TF) is a significant reproductive pathogen of cattle, and sample collection, handling, transport, and testing are significant hurdles to surveillance programs. Recent methods have been developed that allow for the direct detection of TF using a reverse transcription real-time PCR (direct RT-qPCR) approach. To evaluate these methods, a comparative analysis was conducted to assess the technical performance of this assay with a commercially available real-time PCR (qPCR) assay. In addition, the evaluation of two types of collection media (PBS and TF transport tube) was conducted that evaluated sample stability from 0 to 3 days when stored at 4°C or 25°C. Extended incubation times for PBS media were also evaluated (5, 7, and 14 days) at both refrigeration and frozen temperatures to evaluate the effect of extended transport time on samples. Limits of detection (LODs), dynamic range, and RNA stability were assessed using lab-cultured TF spiked into samples of normal bovine smegma collected in PBS or TF transport media, and performance was assessed on field samples collected in parallel. 100% agreement was found between direct RT-qPCR and qPCR at 10 parasites/extraction and a LOD of 1 parasite/extraction. Differences in detection were not observed in either collection media when incubated at either temperatures for up to 3 days of incubation. In addition, the extended incubation experiments indicate that samples containing 10 parasites/extraction can be detected at 4°C for 5 days with a mean Cq 26.34 (95% CI: 23.11-29.58) and detected at -20°C for 7 or 14 days, with a mean Cq 29.55 (95% CI: 27.73-31.37). A significant decrease in detectable RNA was observed in samples containing <10 parasites/extraction at -20°C for 14 days, which should be considered for long-term storage. In summary, direct RT-qPCR was found to be equivalent or superior to qPCR and PBS was not significantly different from TF transport media. The findings of the current study allows for more flexibility during sample collection and transport and ultimately enhancement of TF surveillance programs.

2.
J Endocrinol ; 227(2): R31-50, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26562337

ABSTRACT

Testis development from an indifferent gonad is a critical step in embryogenesis. A hallmark of testis differentiation is sex-specific vascularization that occurs as endothelial cells migrate from the adjacent mesonephros into the testis to surround Sertoli-germ cell aggregates and induce seminiferous cord formation. Many in vitro experiments have demonstrated that vascular endothelial growth factor A (VEGFA) is a critical regulator of this process. Both inhibitors to VEGFA signal transduction and excess VEGFA isoforms in testis organ cultures impaired vascular development and seminiferous cord formation. However, in vivo models using mice which selectively eliminated all VEGFA isoforms: in Sertoli and germ cells (pDmrt1-Cre;Vegfa(-/-)); Sertoli and Leydig cells (Amhr2-Cre;Vegfa(-/-)) or Sertoli cells (Amh-Cre;Vegfa(-/-) and Sry-Cre;Vegfa(-/-)) displayed testes with observably normal cords and vasculature at postnatal day 0 and onwards. Embryonic testis development may be delayed in these mice; however, the postnatal data indicate that VEGFA isoforms secreted from Sertoli, Leydig or germ cells are not required for testis morphogenesis within the mouse. A Vegfa signal transduction array was employed on postnatal testes from Sry-Cre;Vegfa(-/-) versus controls. Ptgs1 (Cox1) was the only upregulated gene (fivefold). COX1 stimulates angiogenesis and upregulates, VEGFA, Prostaglandin E2 (PGE2) and PGD2. Thus, other gene pathways may compensate for VEGFA loss, similar to multiple independent mechanisms to maintain SOX9 expression. Multiple independent mechanism that induce vascular development in the testis may contribute to and safeguard the sex-specific vasculature development responsible for inducing seminiferous cord formation, thus ensuring appropriate testis morphogenesis in the male.


Subject(s)
Neovascularization, Physiologic/genetics , Sex Differentiation/genetics , Testis/blood supply , Testis/embryology , Vascular Endothelial Growth Factor A/physiology , Animals , Humans , Male , Mice , Sex Characteristics , Signal Transduction/genetics , Testis/metabolism , Vascular Endothelial Growth Factor A/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...