Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Vis Exp ; (196)2023 06 16.
Article in English | MEDLINE | ID: mdl-37395591

ABSTRACT

The technique of ultrafast laser ablation in liquids has evolved and matured over the past decade, with several impending applications in various fields such as sensing, catalysis, and medicine. The exceptional feature of this technique is the formation of nanoparticles (colloids) and nanostructures (solids) in a single experiment with ultrashort laser pulses. We have been working on this technique for the past few years, investigating its potential using the surface-enhanced Raman scattering (SERS) technique in hazardous materials sensing applications. Ultrafast laser-ablated substrates (solids and colloids) could detect several analyte molecules at the trace levels/mixture form, including dyes, explosives, pesticides, and biomolecules. Here, we present some of the results achieved using the targets of Ag, Au, Ag-Au, and Si. We have optimized the nanostructures (NSs) and nanoparticles (NPs) obtained (in liquids and air) using different pulse durations, wavelengths, energies, pulse shapes, and writing geometries. Thus, various NSs and NPs were tested for their efficiency in sensing numerous analyte molecules using a simple, portable Raman spectrometer. This methodology, once optimized, paves the way for on-field sensing applications. We discuss the protocols in (a) synthesizing the NPs/NSs via laser ablation, (b) characterization of NPs/NSs, and (c) their utilization in the SERS-based sensing studies.


Subject(s)
Metal Nanoparticles , Nanostructures , Spectrum Analysis, Raman/methods , Metal Nanoparticles/chemistry , Gold/chemistry , Silver/chemistry , Lasers , Colloids
2.
Nanotechnology ; 34(40)2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37402359

ABSTRACT

We present a simple, fast, and single-step approach for fabricating hybrid semiconductor-metal nanoentities through liquid-assisted ultrafast (∼50 fs, 1 kHz, 800 nm) laser ablation. Femtosecond (fs) ablation of Germanium (Ge) substrate was executed in (i) distilled water (ii) silver nitrate (AgNO3-3, 5, 10 mM) (iii) Chloroauric acid (HAuCl4-3, 5, 10 mM), yielding the formation of pure Ge, hybrid Ge-silver (Ag), Ge-gold (Au) nanostructures (NSs) and nanoparticles (NPs). The morphological features and corresponding elemental compositions of Ge, Ge-Ag, and Ge-Au NSs/NPs have been conscientiously studied using different characterization techniques. Most importantly, the deposition of Ag/Au NPs on the Ge substrate and their size variation were thoroughly investigated by changing the precursor concentration. By increasing the precursor concentration (from 3 mM to 10 mM), the deposited Au NPs and Ag NPs' size on the Ge nanostructured surface was increased from ∼46 nm to ∼100 nm and from ∼43 nm to ∼70 nm, respectively. Subsequently, the as-fabricated hybrid (Ge-Au/Ge-Ag) NSs were effectively utilized to detect diverse hazardous molecules (e.g. picric acid and thiram) via the technique of surface-enhanced Raman scattering (SERS). Our findings revealed that the hybrid SERS substrates achieved at 5 mM precursor concentration of Ag (denoted as Ge-5Ag) and Au (denoted as Ge-5Au) had demonstrated superior sensitivity with the enhancement factors of ∼2.5 × 104, 1.38 × 104(for PA), and ∼9.7 × 105and 9.2 × 104(for thiram), respectively. Interestingly, the Ge-5Ag substrate has exhibited ∼10.5 times higher SERS signals than the Ge-5Au substrate.

3.
Nat Commun ; 14(1): 2250, 2023 04 20.
Article in English | MEDLINE | ID: mdl-37080991

ABSTRACT

Appendicular lean mass (ALM) associates with mobility and bone mineral density (BMD). While associations between gut microbiota composition and ALM have been reported, previous studies rely on relatively small sample sizes. Here, we determine the associations between prevalent gut microbes and ALM in large discovery and replication cohorts with information on relevant confounders within the population-based Norwegian HUNT cohort (n = 5196, including women and men). We show that the presence of three bacterial species - Coprococcus comes, Dorea longicatena, and Eubacterium ventriosum - are reproducibly associated with higher ALM. When combined into an anabolic species count, participants with all three anabolic species have 0.80 kg higher ALM than those without any. In an exploratory analysis, the anabolic species count is positively associated with femoral neck and total hip BMD. We conclude that the anabolic species count may be used as a marker of ALM and BMD. The therapeutic potential of these anabolic species to prevent sarcopenia and osteoporosis needs to be determined.


Subject(s)
Osteoporosis , Sarcopenia , Male , Humans , Female , Absorptiometry, Photon , Body Composition , Bone Density , Osteoporosis/complications
4.
RSC Adv ; 13(4): 2620-2630, 2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36741174

ABSTRACT

We have developed simple and cost-effective surface-enhanced Raman scattering (SERS) substrates for the trace detection of pesticide (thiram and thiabendazole) and dye (methylene blue and Nile blue) molecules. Surface patterns (micro/nanostructures) on silicon (Si) substrates were fabricated using the technique of femtosecond (fs) laser ablation in ambient air. Different surface patterns were achieved by tuning the number of laser pulses per unit area (4200, 8400, 42 000, and 84 000 pulses per mm2) on Si. Subsequently, chemically synthesized gold (Au) nanostars were embedded in these laser-patterned areas of Si to achieve a plasmonic active hybrid SERS substrate. Further, the SERS performance of the as-prepared Au nanostar embedded Si substrates were tested with different probe molecules. The as-prepared substrates allowed us to detect a minimum concentration of 0.1 ppm in the case of thiram, 1 ppm in the case of thiabendazole (TBZ), 1.6 ppb in the case of methylene blue (MB), and 1.8 ppb in case of Nile blue (NB). All these were achieved using a simple, field-deployable, portable Raman spectrometer. Additionally, the optimized SERS substrate demonstrated ∼21 times higher SERS enhancement than the Au nanostar embedded plain Si substrate. Furthermore, the optimized SERS platform was utilized to detect a mixture of dyes (MB + NB) and pesticides (thiram + TBZ). The possible reasons for the observed additional enhancement are elucidated.

5.
Nanomaterials (Basel) ; 12(13)2022 Jun 22.
Article in English | MEDLINE | ID: mdl-35807985

ABSTRACT

Recently, filter paper (FP)-based surface-enhanced Raman scattering (SERS) substrates have stimulated significant attention owing to their promising advantages such as being low-cost, easy to handle, and practically suitable for real-field applications in comparison to the solid-based substrates. Herein, a simple and versatile approach of laser-ablation in liquid for the fabrication of silver (Ag)-gold (Au) alloy nanoparticles (NPs). Next, the optimization of flexible base substrate (sandpaper, printing paper, and FP) and the FP the soaking time (5−60 min) was studied. Further, the optimized FP with 30 min-soaked SERS sensors were exploited to detect minuscule concentrations of pesticide (thiram-50 nM), dye (Nile blue-5 nM), and an explosive (RDX-1,3,5-Trinitroperhydro-1,3,5-triazine-100 nM) molecule. Interestingly, a prominent SERS effect was observed from the Au NPs exhibiting satisfactory reproducibility in the SERS signals over ~1 cm2 area for all of the molecules inspected with enhancement factors of ~105 and relative standard deviation values of <15%. Furthermore, traces of pesticide residues on the surface of a banana and RDX on the glass slide were swabbed with the optimized FP substrate and successfully recorded the SERS spectra using a portable Raman spectrometer. This signifies the great potential application of such low-cost, flexible substrates in the future real-life fields.

7.
ACS Omega ; 7(18): 15969-15981, 2022 May 10.
Article in English | MEDLINE | ID: mdl-35571848

ABSTRACT

We report the fabrication and performance evaluation of hybrid surface-enhanced Raman scattering (SERS) substrates involving laser ablation and chemical routes for the trace-level detection of various analyte molecules. Initially, picosecond laser ablation experiments under ambient conditions were performed on pure silver (Ag) and gold (Au) substrates to achieve distinct nanosized features on the surface. The properties of the generated surface features on laser-processed portions of Ag/Au targets were systematically analyzed using UV-visible reflection and field emission scanning electron microscopy studies. Later, hybrid-SERS substrates were achieved by grafting the chemically synthesized Au nanostars on the plain and laser-processed plasmonic targets. Subsequently, we employed these as SERS platforms for the detection of a pesticide (thiram), a molecule used in explosive compositions [ammonium nitrate (AN)], and a dye molecule [Nile blue (NB)]. A comparative SERS study between the Au nanostar-decorated bare glass, silicon, Ag, Au, and laser-processed Ag and Au targets has been established. Our studies and the obtained data have unambiguously determined that laser-processed Ag structures have demonstrated reasonably good enhancements in the Raman signal intensities for distinct analytes among other substrates. Importantly, the fabricated hybrid SERS substrate of "Au nanostar-decorated laser-processed Ag" exhibited up to eight times enhancement in the SERS intensity compared to laser-processed Ag (without nanostars), as well as up to three times enhancement than the Au nanostar-loaded plain Ag substrates. Additionally, the achieved detection limits from the Au nanostar-decorated laser-processed Ag SERS substrate were ∼50 pM, ∼5 nM, and ∼5 µM for NB, thiram, and AN, respectively. The estimated enhancement factors accomplished from the Au nanostar-decorated laser-processed Ag substrate were ∼106, ∼106, and ∼104 for NB, thiram, and AN, respectively.

8.
J Hazard Mater ; 407: 124353, 2021 04 05.
Article in English | MEDLINE | ID: mdl-33144017

ABSTRACT

We demonstrate the detection of dipicolinic acid, (DPA), a biomarker of bacterial spores for Bacillus anthracis, 2,4-Dinitrotoluene (DNT) and picric acid (PA) nitroaromatic hazardous chemicals on ultra-sensitive, reusable femtosecond laser textured Au nanostructures decorated with hierarchical AuNPs as a SERS substrate. The AuNPs were achieved by ablating an Au sheet using two different laser scan speeds (1 and 0.1 mm/s) in linear and crossed patterns. The morphological studies revealed dense hierarchical nanostructures decorated with spherical AuNPs possessing 30-40 nm in size in 0.1 mm/s laser scan. The limits of detection (LOD) of the sensor were determined from the detailed SERS measurements and were estimated to be 0.83 pg/L, 3.6 pg/L and 2.3 pg/L for DPA, DNT, and PA, respectively. To the best of our knowledge, the achieved sensitivity is nearly 2 orders improved for DPA when compared with the currently reported LODs using other techniques and 1 order in the case of SERS. Moreover, for DNT and PA the LODs were found to be either superior or comparable with recent reports. We have also demonstrated the competence of our SERS substrates by testing a few real samples (water spiked with these analytes) and again obtained very good sensitivity.

9.
Anal Chim Acta ; 1101: 157-168, 2020 Mar 08.
Article in English | MEDLINE | ID: mdl-32029107

ABSTRACT

The development of recyclable surface enhanced Raman scattering (SERS) based sensors has been in huge demand for trace level explosives detection. A simple, hybrid Silicon (Si) nanotextured target-based SERS platform is fabricated through patterning micro square arrays (MSA) on Si using femtosecond (fs) laser ablation technique at different fluences. Using the hybrid target Si MSA substrate loaded/decorated with Ag-Au alloy NPs (obtained using femtosecond ablation in liquids) we demonstrate the trace level detection of organic nitro-explosives [picric acid (PA), 2,4-dinitrotoluene (DNT), and 1, 3, 5-trinitroperhydro-1, 3, 5-triazine (RDX)] and their mixtures. The microstructures/nanostructures of MSA fabricated at an input fluence of 9.55 J/cm2, and decorated with Ag-Au alloy NPs, exhibited exceptional SERS enhancement factors (EFs) up to ∼1010 for MB, ∼106 for PA, and ∼104 for RDX with the detection limits obtained being âˆ¼5 pM, ∼36 nM, and ∼400 nM for MB, PA and RDX respectively. Furthermore, we demonstrate these SERS substrates possess good reproducibility (RSD values < 15%) and a superior performance compared to a commercial Ag substrate (SERSitive, Poland). Three binary mixtures, i.e. MB-PA, MB-DNT, PA-DNT at different concentrations, were also investigated using the same SERS substrate to test the efficacy. Further, the SERS spectra of dyes, explosives, and complex mixtures were utilized for discrimination/classification using principal component analysis.

10.
ACS Omega ; 4(18): 17691-17701, 2019 Oct 29.
Article in English | MEDLINE | ID: mdl-31681875

ABSTRACT

We demonstrate an ultrafast laser-ablated hierarchically patterned silver nanoparticle/graphene oxide (AgNP/GO) hybrid surface-enhanced Raman scattering (SERS) substrate for highly sensitive and reproducible detection of an explosive marker 2,4-dinitrotoluene (2,4-DNT). A hierarchical laser-patterned silver sheet (Ag-S) is achieved by ultrafast laser ablation in air with pulse energies of 25, 50, and 100 µJ. Multiple laser pulses at a wavelength of 800 nm and a pulse repetition rate of 50 fs at 1 kHz are directly focused on Ag-S to produce and deposit AgNPs onto Ag-S. The surface morphology of ablated Ag-S was evaluated using atomic force microscopy, optical profilometry, and field emission scanning electron microscopy (FESEM). A rapid increase in the ablation rate with increasing laser energy was observed. Selected area Raman mapping is performed to understand the intensity and size distribution of AgNPs on Ag-S. Further, GO was spin-coated onto the AgNPs produced by ultrafast ablation on Ag-S. The hierarchical laser-patterned AgNP/GO hybrid structure was characterized using FESEM, high-resolution transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and Raman spectroscopy. Further, hierarchical laser-patterned AgNP/GO hybrid structures have been utilized as SERS-active substrates for the selective detection of 2,4-DNT, an explosive marker. The developed SERS-active sensor shows good stability and high sensitivity up to picomolar (pM) concentration range with a Raman intensity enhancement of ∼1010 for 2,4-DNT. The realized enhancement of SERS intensity is due to the cumulative effect of GO coated on Ag-S as a proactive layer and AgNPs produced by ultrafast ablation.

11.
Analyst ; 144(7): 2327-2336, 2019 Mar 25.
Article in English | MEDLINE | ID: mdl-30768076

ABSTRACT

Surface enhanced Raman spectroscopy (SERS) is a cutting edge analytical tool for trace analyte detection due to its highly sensitive, non-destructive and fingerprinting capability. Herein, we report the detection of multiple analytes from various mixtures using gold nanoparticles (NPs) and nanostructures (NSs) as SERS platforms. NPs and NSs were achieved through the simple approach of laser ablation in liquids (LAL) and their morphological studies were conducted with a UV-Visible absorption spectrometer, a high resolution transmission electron microscope (HRTEM) and a field emission scanning electron microscope (FESEM). The fabricated NPs/NSs allowed the sensitive and selective detection of different mixed compounds containing (i) rhodamine 6G (Rh6G) and methylene blue (MB), (ii) crystal violet (CV) and malachite green (MG), (iii) picric acid (explosive) and MB (dye), (iv) picric acid and 3-nitro-1,2,4- triazol-5-one (explosive, NTO) and (v) picric acid and 2,4-dinitrotoluene (explosive, DNT) using a portable Raman spectrometer. Thus, the obtained results demonstrate the capability of fabricated SERS substrates in identifying explosives and dyes from various mixtures. This could pave a new way for simultaneous detection of multiple analytes in real field applications.

12.
ACS Omega ; 3(12): 18420-18432, 2018 Dec 31.
Article in English | MEDLINE | ID: mdl-31458414

ABSTRACT

Fabrication of reproducible and versatile surface-enhanced Raman scattering (SERS) substrates is crucial for real-time applications such as explosive detection for human safety and biological imaging for cancer diagnosis. However, it still remains a challenging task, even after several methodologies were developed by various research groups, primarily due to (a) a lack of consistency in detection of a variety of molecules (b) cost-effectiveness of the SERS substrates prepared, and (c) byzantine preparation procedures, etc. Herein, we establish a procedure for preparing reproducible SERS-active substrates comprised of laser-induced nanoparticle-embedded periodic surface structures (LINEPSS) and metallization of silicon (Si) LINEPSS. LINEPSS were fabricated using the technique of femtosecond laser ablation of Si in acetone. The versatile SERS-active substrates were then achieved by two ways, including the drop casting of silver (Ag)/gold (Au) nanoparticles (NPs) on Si LINEPSS and Ag plating on the Si LINEPSS structures. By controlling the LINEPSS grating periodicity, the effect of plasmonic nanoparticles/plasmonic plating on the Si NPs embedded periodic surface structures enormously improved the SPR strength, resulting in the consistent and superior Raman enhancements. The reproducible SERS signals were achieved by detecting the molecules of Methylene Blue (MB), 2,4-dinitrotoluene (DNT), and 5-amino-3-nitro-l,2,4-triazole (ANTA). The SERS signal strength is determined by the grating periodicity, which, in turn, is determined by the input laser fluence. The SERS-active platform with grating periodicity of 130 ± 10 nm and 150 ± 5 nm exhibited strong Raman enhancements of ∼108 for MB and ∼107 for ANTA molecules, respectively, and these platforms are demonstrated to be capable, even for multiple usages.

13.
ACS Omega ; 3(7): 8190-8201, 2018 Jul 31.
Article in English | MEDLINE | ID: mdl-31458956

ABSTRACT

We present a systematic study on the fabrication, characterization of versatile, and low-cost filter paper-based surface-enhanced Raman spectroscopy (SERS) substrates loaded with salt-induced aggregated Ag/Au nanoparticles (NPs). These were demonstrated as efficient SERS substrates for the detection of multiple explosive molecules such as picric acid (5 µM), 2,4-dinitrotoluene (1 µM), and 3-nitro-1,2,4-triazol-5-one (10 µM) along with a common dye molecule (methylene blue, 5 nM). The concentrations of the dye and explosive molecules in terms of mass represent 31.98 pg, 11.45 ng, 1.82 ng, and 13.06 ng, respectively. Silver (Ag) and gold (Au) colloidal NPs were prepared by femtosecond laser (∼50 fs, 800 nm, 1 kHz) ablation of Ag/Au-target immersed in distilled water. Subsequently, the aggregated nanoparticles were achieved by mixing the pure Ag and Au NPs with different concentrations of NaCl. These aggregated NPs were characterized by UV-visible absorption and high-resolution transmission electron microscopy techniques. The SERS substrates were prepared by soaking the filter paper in aggregated NPs. The morphologies of the paper substrates were investigated using field-emission scanning electron microscopy technique. We have achieved superior enhancements with high reproducibility and sensitivity for filter paper substrates loaded with Ag/Au NPs mixed for an optimum concentration of 50 mM NaCl.

SELECTION OF CITATIONS
SEARCH DETAIL
...