Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Plant Physiol ; 193(1): 291-303, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37315207

ABSTRACT

Adenine base editors (ABEs) are valuable, precise genome editing tools in plants. In recent years, the highly promising ADENINE BASE EDITOR8e (ABE8e) was reported for efficient A-to-G editing. However, compared to monocots, comprehensive off-target analyses for ABE8e are lacking in dicots. To determine the occurrence of off-target effects in tomato (Solanum lycopersicum), we assessed ABE8e and a high-fidelity version, ABE8e-HF, at 2 independent target sites in protoplasts, as well as stable T0 lines. Since ABE8e demonstrated higher on-target efficiency than ABE8e-HF in tomato protoplasts, we focused on ABE8e for off-target analyses in T0 lines. We conducted whole-genome sequencing (WGS) of wild-type (WT) tomato plants, green fluorescent protein (GFP)-expressing T0 lines, ABE8e-no-gRNA control T0 lines, and edited T0 lines. No guide RNA (gRNA)-dependent off-target edits were detected. Our data showed an average of approximately 1,200 to 1,500 single-nucleotide variations (SNVs) in either GFP control plants or base-edited plants. Also, no specific enrichment of A-to-G mutations were found in base-edited plants. We also conducted RNA sequencing (RNA-seq) of the same 6 base-edited and 3 GFP control T0 plants. On average, approximately 150 RNA-level SNVs were discovered per plant for either base-edited or GFP controls. Furthermore, we did not find enrichment of a TA motif on mutated adenine in the genomes and transcriptomes in base-edited tomato plants, as opposed to the recent discovery in rice (Oryza sativa). Hence, we could not find evidence for genome- and transcriptome-wide off-target effects by ABE8e in tomato.


Subject(s)
Solanum lycopersicum , Solanum lycopersicum/genetics , Transcriptome/genetics , Adenine/metabolism , Mutation/genetics , Gene Editing , RNA/genetics , CRISPR-Cas Systems
3.
Methods Mol Biol ; 2653: 3-19, 2023.
Article in English | MEDLINE | ID: mdl-36995616

ABSTRACT

Engineered SpCas9 variant, SpRY, has been demonstrated to facilitate protospacer adjacent motif (PAM) unrestricted targeting of genomic DNA in various biological systems. Here we describe fast, efficient, and robust preparation of SpRY-derived genome and base editors that can be easily adapted to target various DNA sequences in plants due to modular Gateway assembly. Presented are detailed protocols for preparing T-DNA vectors for genome and base editors and for assessing genome editing efficiency through transient expression of these reagents in rice protoplasts.


Subject(s)
Gene Editing , Oryza , Gene Editing/methods , CRISPR-Cas Systems/genetics , CRISPR-Associated Protein 9/genetics , Genome, Plant , Oryza/genetics , Oryza/metabolism
4.
Methods Mol Biol ; 2653: 53-71, 2023.
Article in English | MEDLINE | ID: mdl-36995619

ABSTRACT

CRISPR-Cas9 systems have revolutionized genome editing in plants and facilitated gene knockout and functional genomic studies in woody plants, like poplar. However, in tree species, previous studies have only focused on targeting indel mutations through CRISPR-based nonhomologous end joining (NHEJ) pathway. Cytosine base editors (CBEs) and adenine base editors (ABEs) enable C-to-T and A-to-G base changes, respectively. These base editors can introduce premature stop codons and amino acid changes, alter RNA splicing sites, and edit cis-regulatory elements of promoters. Base editing systems have only been recently established in trees. In this chapter, we describe a detailed, robust, and thoroughly tested protocol for preparing T-DNA vectors with two highly efficient CBEs, PmCDA1-BE3 and A3A/Y130F-BE3, and the highly efficient ABE8e as well as delivering the T-DNA through an improved protocol for Agrobacterium-mediated transformation in poplar. This chapter will provide promising application potential for precise base editing in poplar and other trees.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Gene Editing/methods , CRISPR-Cas Systems/genetics , Agrobacterium/genetics , Promoter Regions, Genetic
6.
Plant Biotechnol J ; 20(9): 1670-1682, 2022 09.
Article in English | MEDLINE | ID: mdl-35524459

ABSTRACT

PAM-relaxed Cas9 nucleases, cytosine base editors and adenine base editors are promising tools for precise genome editing in plants. However, their genome-wide off-target effects are largely unexplored. Here, we conduct whole-genome sequencing (WGS) analyses of transgenic plants edited by xCas9, Cas9-NGv1, Cas9-NG, SpRY, nCas9-NG-PmCDA1, nSpRY-PmCDA1 and nSpRY-ABE8e in rice. Our results reveal that Cas9 nuclease and base editors, when coupled with the same guide RNA (gRNA), prefer distinct gRNA-dependent off-target sites. De novo generated gRNAs by SpRY editors lead to additional, but insubstantial, off-target mutations. Strikingly, ABE8e results in ~500 genome-wide A-to-G off-target mutations at TA motif sites per transgenic plant. ABE8e's preference for the TA motif is also observed at the target sites. Finally, we investigate the timeline and mechanism of somaclonal variation due to tissue culture, which chiefly contributes to the background mutations. This study provides a comprehensive understanding on the scale and mechanisms of off-target and background mutations occurring during PAM-relaxed genome editing in plants.


Subject(s)
CRISPR-Cas Systems , Oryza , CRISPR-Cas Systems/genetics , Endonucleases/genetics , Gene Editing/methods , Genome-Wide Association Study , Oryza/genetics , Plants, Genetically Modified/genetics , RNA, Guide, Kinetoplastida/genetics
7.
Nat Plants ; 8(5): 513-525, 2022 05.
Article in English | MEDLINE | ID: mdl-35596077

ABSTRACT

CRISPR-Cas9, its derived base editors and CRISPR activation systems have greatly aided genome engineering in plants. However, these systems are mostly used separately, leaving their combinational potential largely untapped. Here we develop a versatile CRISPR-Combo platform, based on a single Cas9 protein, for simultaneous genome editing (targeted mutagenesis or base editing) and gene activation in plants. We showcase the powerful applications of CRISPR-Combo for boosting plant genome editing. First, CRISPR-Combo is used to shorten the plant life cycle and reduce the efforts in screening transgene-free genome-edited plants by activation of a florigen gene in Arabidopsis. Next, we demonstrate accelerated regeneration and propagation of genome-edited plants by activation of morphogenic genes in poplar. Furthermore, we apply CRISPR-Combo to achieve rice regeneration without exogenous plant hormones, which is established as a new method to predominately enrich heritable targeted mutations. In conclusion, CRISPR-Combo is a versatile genome engineering tool with promising applications in crop breeding.


Subject(s)
Arabidopsis , Gene Editing , Arabidopsis/genetics , CRISPR-Cas Systems , Genome, Plant , Plant Breeding , Plants, Genetically Modified/genetics
8.
Biotechnol J ; 17(7): e2100571, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35377968

ABSTRACT

CRISPR-Cas9 and Cas12a are widely used sequence-specific nucleases (SSNs) for genome editing. The nuclease domains of Cas proteins can induce DNA double strand breaks upon RNA guided DNA targeting. Zinc finger nucleases (ZFNs) and Transcription Activator-Like Effector Nucleases (TALENs) have been popular SSNs prior to CRISPR. Both ZFNs and TALENs are based on reconstitution of two monomers with each consisting of a DNA binding domain and a FokI nuclease domain. Inspired by the configuration of ZFNs and TALENs, dimeric FokI-dCas9 systems were previously demonstrated in human cells. Such configuration, based on a pair of guide RNAs (gRNAs), offers great improvement on targeting specificity. To expand the targeting scope of dimeric FokI-dCas systems, the PAM (protospacer adjacent motif)-less SpRY Cas9 variant and the PAM-relaxed Mb2Cas12a system were explored. Rice cells showed that FokI-dSpRY had more robust editing efficiency than a paired SpRY nickase system. Furthermore, a dimeric FokI-dMb2Cas12a system was developed that displayed comparable editing activity to Mb2Cas12a nuclease in rice cells. Finally, a single-chain FokI-FokI-dMb2Cas12a system was developed that cuts DNA outside its targeting sequence, which could be useful for many versatile applications. Together, this work greatly expanded the FokI based CRISPR-Cas systems for genome editing.


Subject(s)
CRISPR-Cas Systems , Transcription Activator-Like Effector Nucleases , CRISPR-Cas Systems/genetics , DNA/genetics , Endonucleases/genetics , Gene Editing , Humans , Transcription Activator-Like Effector Nucleases/genetics
9.
Plant Biotechnol J ; 20(3): 499-510, 2022 03.
Article in English | MEDLINE | ID: mdl-34669232

ABSTRACT

Cytosine base editors (CBEs) can install a predefined stop codon at the target site, representing a more predictable and neater method for creating genetic knockouts without altering the genome size. Due to the enhanced predictability of the editing outcomes, it is also more efficient to obtain homozygous mutants in the first generation. With the recent advancement of CBEs on improved editing activity, purify and specificity in plants and animals, base editing has become a more appealing technology for generating knockouts. However, there is a lack of design tools that can aid the adoption of CBEs for achieving such a purpose, especially in plants. Here, we developed a user-friendly design tool named CRISPR-BETS (base editing to stop), which helps with guide RNA (gRNA) design for introducing stop codons in the protein-coding genes of interest. We demonstrated in rice and tomato that CRISPR-BETS is easy-to-use, and its generated gRNAs are highly specific and efficient for generating stop codons and obtaining homozygous knockout lines. While we tailored the tool for the plant research community, CRISPR-BETS can also serve non-plant species.


Subject(s)
Clustered Regularly Interspaced Short Palindromic Repeats , Gene Editing , Animals , CRISPR-Cas Systems/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Codon, Terminator/genetics , Cytosine , Gene Editing/methods , Plants/genetics , RNA, Guide, Kinetoplastida/genetics
10.
Nat Plants ; 8(1): 20-22, 2022 01.
Article in English | MEDLINE | ID: mdl-34949803
11.
Front Genome Ed ; 3: 756766, 2021.
Article in English | MEDLINE | ID: mdl-34713268

ABSTRACT

As a precise genome editing technology, base editing is broadly used in both basic and applied plant research. Cytosine base editors (CBEs) and adenine base editors (ABEs) represent the two commonly used base editor types that mediate C-to-T and A-to-G base transition changes at the target sites, respectively. To date, no transversion base editors have been described in plants. Here, we assessed three C-to-G base editors (CGBEs) for targeting sequences with SpCas9's canonical NGG protospacer adjacent motifs (PAMs) as well as three PAM-less SpRY-based CGBEs for targeting sequences with relaxed PAM requirements. The analyses in rice and tomato protoplasts showed that these CGBEs could make C-to-G conversions at the target sites, and they preferentially edited the C6 position in the 20-nucleotide target sequence. C-to-T edits, insertions and deletions (indels) were major byproducts induced by these CGBEs in the protoplast systems. Further assessment of these CGBEs in stably transformed rice and poplar plants revealed the preference for editing of non-GC sites, and C-to-T edits are major byproducts. Successful C-to-G editing in stably transgenic rice plants was achieved by rXRCC1-based CGBEs with monoallelic editing efficiencies up to 38% in T0 lines. The UNG-rAPOBEC1 (R33A)-based CGBE resulted in successful C-to-G editing in polar, with monoallelic editing efficiencies up to 6.25% in T0 lines. Overall, this study revealed that different CGBEs have different preference on preferred editing sequence context, which could be influenced by cell cycles, DNA repair pathways, and plant species.

12.
Plant Physiol ; 187(1): 73-87, 2021 09 04.
Article in English | MEDLINE | ID: mdl-34618139

ABSTRACT

Cytosine base editors (CBEs) are the promising tools for precise genome editing in plants. It is important to investigate potential off-target effects of an efficient CBE at the genome and transcriptome levels in a major crop. Based on comparison of five cytidine deaminases and two different promoters for expressing single-guide RNAs (sgRNAs), we tested a highly efficient A3A/Y130F-BE3 system for efficient C-to-T base editing in tomato (Solanum lycopersicum). We then conducted whole-genome sequencing of four base-edited tomato plants, three Green fluorescent protein (GFP)-expressing control plants, and two wild-type plants. The sequencing depths ranged from 25× to 49× with read mapping rates >97%. No sgRNA-dependent off-target mutations were detected. Our data show an average of approximately 1,000 single-nucleotide variations (SNVs) and approximately 100 insertions and deletions (indels) per GFP control plant. Base-edited plants had on average elevated levels of SNVs (approximately 1,250) and indels (approximately 300) per plant. On average, about 200 more C-to-T (G-to-A) mutations were found in a base-edited plant than a GFP control plant, suggesting some level of sgRNA-independent off-target effects, though the difference is not statistically significant. We also conducted RNA sequencing of the same four base-edited plants and three GFP control plants. An average of approximately 200 RNA SNVs was discovered per plant for either base-edited or GFP control plants. Furthermore, no specific enrichment of C-to-U mutations can be found in the base-edited plants. Hence, we cannot find any evidence for bona fide off-target mutations by A3A/Y130F-BE3 at the transcriptome level.


Subject(s)
Cytosine/metabolism , Gene Expression Profiling , Genome-Wide Association Study , Plant Proteins/genetics , Solanum lycopersicum/genetics , Solanum lycopersicum/metabolism , Plant Proteins/metabolism
13.
Nat Plants ; 7(9): 1166-1187, 2021 09.
Article in English | MEDLINE | ID: mdl-34518669

ABSTRACT

The development of CRISPR-Cas systems has sparked a genome editing revolution in plant genetics and breeding. These sequence-specific RNA-guided nucleases can induce DNA double-stranded breaks, resulting in mutations by imprecise non-homologous end joining (NHEJ) repair or precise DNA sequence replacement by homology-directed repair (HDR). However, HDR is highly inefficient in many plant species, which has greatly limited precise genome editing in plants. To fill the vital gap in precision editing, base editing and prime editing technologies have recently been developed and demonstrated in numerous plant species. These technologies, which are mainly based on Cas9 nickases, can introduce precise changes into the target genome at a single-base resolution. This Review provides a timely overview of the current status of base editors and prime editors in plants, covering both technological developments and biological applications.


Subject(s)
CRISPR-Associated Protein 9/genetics , Crops, Agricultural/genetics , Gene Editing/methods , Genome, Plant , Plant Breeding/methods
14.
Nat Plants ; 7(7): 942-953, 2021 07.
Article in English | MEDLINE | ID: mdl-34168320

ABSTRACT

RNA-guided CRISPR activation (CRISPRa) systems have been developed in plants. However, the simultaneous activation of multiple genes remains challenging. Here, we develop a highly robust CRISPRa system working in rice, Arabidopsis and tomato, CRISPR-Act3.0, through systematically exploring different effector recruitment strategies and various transcription activators based on deactivated Streptococcus pyogenes Cas9 (dSpCas9). The CRISPR-Act3.0 system results in fourfold to sixfold higher activation than the state-of-the-art CRISPRa systems. We further develop a tRNA-gR2.0 (single guide RNA 2.0) expression system enabling CRISPR-Act3.0-based robust activation of up to seven genes for metabolic engineering in rice. In addition, CRISPR-Act3.0 allows the simultaneous modification of multiple traits in Arabidopsis, which are stably transmitted to the T3 generations. On the basis of CRISPR-Act3.0, we elucidate guide RNA targeting rules for effective transcriptional activation. To target T-rich protospacer adjacent motifs (PAMs), we transfer this activation strategy to CRISPR-dCas12b and further improve the dAaCas12b-based CRISPRa system. Moreover, we develop a potent near-PAM-less CRISPR-Act3.0 system on the basis of the SpRY dCas9 variant, which outperforms the dCas9-NG system in both activation potency and targeting scope. Altogether, our study has substantially improved the CRISPRa technology in plants and provided plant researchers a powerful toolbox for efficient gene activation in foundational and translational research.


Subject(s)
Arabidopsis/genetics , CRISPR-Cas Systems , Genetic Engineering/methods , Oryza/genetics , Plant Breeding/methods , Solanum lycopersicum/genetics , Transcriptional Activation/genetics , Crops, Agricultural/genetics , Gene Expression Regulation, Plant , Genetic Variation , Genotype
15.
Plant Biotechnol J ; 19(10): 2052-2068, 2021 10.
Article in English | MEDLINE | ID: mdl-34042262

ABSTRACT

Cytosine base editors (CBEs) are great additions to the expanding genome editing toolbox. To improve C-to-T base editing in plants, we first compared seven cytidine deaminases in the BE3-like configuration in rice. We found A3A/Y130F-CBE_V01 resulted in the highest C-to-T base editing efficiency in both rice and Arabidopsis. Furthermore, we demonstrated this A3A/Y130F cytidine deaminase could be used to improve iSpyMacCas9-mediated C-to-T base editing at A-rich PAMs. To showcase its applications, we first applied A3A/Y130F-CBE_V01 for multiplexed editing to generate microRNA-resistant mRNA transcripts as well as pre-mature stop codons in multiple seed trait genes. In addition, we harnessed A3A/Y130F-CBE_V01 for efficient artificial evolution of novel ALS and EPSPS alleles which conferred herbicide resistance in rice. To further improve C-to-T base editing, multiple CBE_V02, CBE_V03 and CBE_V04 systems were developed and tested in rice protoplasts. The CBE_V04 systems were found to have improved editing activity and purity with focal recruitment of more uracil DNA glycosylase inhibitors (UGIs) by the engineered single guide RNA 2.0 scaffold. Finally, we used whole-genome sequencing (WGS) to compare six CBE_V01 systems and four CBE_V04 systems for genome-wide off-target effects in rice. Different levels of cytidine deaminase-dependent and sgRNA-independent off-target effects were indeed revealed by WGS among edited lines by these CBE systems. We also investigated genome-wide sgRNA-dependent off-target effects by different CBEs in rice. This comprehensive study compared 21 different CBE systems, and benchmarked PmCDA1-CBE_V04 and A3A/Y130F-CBE_V04 as next-generation plant CBEs with high editing efficiency, purity, and specificity.


Subject(s)
Cytosine , Gene Editing , CRISPR-Cas Systems , Mutation , RNA, Guide, Kinetoplastida , Whole Genome Sequencing
16.
Plant Commun ; 2(2): 100101, 2021 03 08.
Article in English | MEDLINE | ID: mdl-33898973

ABSTRACT

The most popular CRISPR-SpCas9 system recognizes canonical NGG protospacer adjacent motifs (PAMs). Previously engineered SpCas9 variants, such as Cas9-NG, favor G-rich PAMs in genome editing. In this manuscript, we describe a new plant genome-editing system based on a hybrid iSpyMacCas9 platform that allows for targeted mutagenesis, C to T base editing, and A to G base editing at A-rich PAMs. This study fills a major technology gap in the CRISPR-Cas9 system for editing NAAR PAMs in plants, which greatly expands the targeting scope of CRISPR-Cas9. Finally, our vector systems are fully compatible with Gateway cloning and will work with all existing single-guide RNA expression systems, facilitating easy adoption of the systems by others. We anticipate that more tools, such as prime editing, homology-directed repair, CRISPR interference, and CRISPR activation, will be further developed based on our promising iSpyMacCas9 platform.


Subject(s)
CRISPR-Cas Systems , Gene Editing/methods , Genome, Plant , Oryza/genetics , Triticum/genetics , Zea mays/genetics
18.
Methods Mol Biol ; 2238: 95-113, 2021.
Article in English | MEDLINE | ID: mdl-33471327

ABSTRACT

CRISPR-Cas9 has revolutionized the field of genome engineering. Base editing, a new genome editing strategy, was recently developed to engineer nucleotide substitutions. DNA base editing systems use a catalytically impared Cas nuclease together with a nucleobase deaminase enzyme to specifically introduce point mutations without generating double-stranded breaks, which provide huge potential in crop improvement. Here, we describe fast and efficient preparation of user-friendly C to T base editors, BE3, and Target-AID. Presented are detailed protocols for T-DNA vector preparation with BE3 or modified Target-AID base editor based on Gateway assembly and efficiency assessment of base editing through a rice protoplast transient expression system.


Subject(s)
CRISPR-Cas Systems , Cytidine Deaminase/antagonists & inhibitors , Gene Editing , Genetic Vectors/genetics , Oryza/growth & development , Plants, Genetically Modified/growth & development , Transformation, Genetic , Cytidine Deaminase/genetics , Gene Transfer Techniques , Genome, Plant , Oryza/genetics , Plants, Genetically Modified/genetics , Protoplasts/physiology , Transgenes/physiology
19.
Curr Opin Plant Biol ; 60: 101980, 2021 04.
Article in English | MEDLINE | ID: mdl-33401227

ABSTRACT

The CRISPR/Cas (Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR Associated) system-mediated precise genome editing has revolutionized genome engineering due to ease of use and versatility of multiplexing. Catalytically inactivated Cas variants (dCas) further expand the usefulness of the CRISPR/Cas system for genetics studies and translational research without inducing DNA double-strand breaks. Fusion of diverse effector domains to dCas proteins empowers the CRISPR/dCas system as a multifunctional platform for gene expression regulation, epigenetic regulation and sequence-specific imaging. In this short review, we summarize the recent advances of CRISPR/dCas-mediated transcriptional activation and repression, and epigenetic modifications. We also highlight the future directions and broader applications of the CRISPR/dCas systems in plants.


Subject(s)
Clustered Regularly Interspaced Short Palindromic Repeats , Epigenesis, Genetic , CRISPR-Cas Systems/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Epigenesis, Genetic/genetics , Gene Editing , Plants/genetics
20.
Nat Plants ; 7(1): 25-33, 2021 01.
Article in English | MEDLINE | ID: mdl-33398158

ABSTRACT

The rapid development of the CRISPR-Cas9, -Cas12a and -Cas12b genome editing systems has greatly fuelled basic and translational plant research1-6. DNA targeting by these Cas nucleases is restricted by their preferred protospacer adjacent motifs (PAMs). The PAM requirement for the most popular Streptococcus pyogenes Cas9 (SpCas9) is NGG (N = A, T, C, G)7, limiting its targeting scope to GC-rich regions. Here, we demonstrate genome editing at relaxed PAM sites in rice (a monocot) and the Dahurian larch (a coniferous tree), using an engineered SpRY Cas9 variant8. Highly efficient targeted mutagenesis can be readily achieved by SpRY at relaxed PAM sites in the Dahurian larch protoplasts and in rice transgenic lines through non-homologous end joining (NHEJ). Furthermore, an SpRY-based cytosine base editor was developed and demonstrated by directed evolution of new herbicide resistant OsALS alleles in rice. Similarly, a highly active SpRY adenine base editor was developed based on ABE8e (ref. 9) and SpRY-ABE8e was able to target relaxed PAM sites in rice plants, achieving up to 79% editing efficiency with high product purity. Thus, the SpRY toolbox breaks a PAM restriction barrier in plant genome engineering by enabling DNA editing in a PAM-less fashion. Evidence was also provided for secondary off-target effects by de novo generated single guide RNAs (sgRNAs) due to SpRY-mediated transfer DNA self-editing, which calls for more sophisticated programmes for designing highly specific sgRNAs when implementing the SpRY genome editing toolbox.


Subject(s)
CRISPR-Associated Protein 9 , CRISPR-Associated Proteins , CRISPR-Cas Systems , Gene Editing/methods , Genome, Plant/genetics , B30.2-SPRY Domain/genetics , Larix/genetics , Oryza/genetics , Protoplasts
SELECTION OF CITATIONS
SEARCH DETAIL
...